3 resultados para STRIPS

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a partition of the critical strip, associated with each partial sum 1 + 2z + ... + nz of the Riemann zeta function for Re z < −1, formed by infinitely many rectangles for which a formula allows us to count the number of its zeros inside each of them with an error, at most, of two zeros. A generalization of this formula is also given to a large class of almost-periodic functions with bounded spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows, by means of Kronecker’s theorem, the existence of infinitely many privileged regions called r -rectangles (rectangles with two semicircles of small radius r ) in the critical strip of each function Ln(z):= 1−∑nk=2kz , n≥2 , containing exactly [Tlogn2π]+1 zeros of Ln(z) , where T is the height of the r -rectangle and [⋅] represents the integer part.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we introduce a formula for the exact number of zeros of every partial sum of the Riemann zeta function inside infinitely many rectangles of the critical strips where they are situated.