5 resultados para SIAM
em Universidad de Alicante
Resumo:
The original motivation for this paper was to provide an efficient quantitative analysis of convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set J. Parameter perturbations on the right-hand side of the inequalities are required to be merely bounded, and thus the natural parameter space is l ∞(J). Our basic strategy consists of linearizing the parameterized convex system via splitting convex inequalities into linear ones by using the Fenchel–Legendre conjugate. This approach yields that arbitrary bounded right-hand side perturbations of the convex system turn on constant-by-blocks perturbations in the linearized system. Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map of block-perturbed linear systems, which involves only the system’s data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. In this way we extend to the convex setting the results of Cánovas et al. (SIAM J. Optim. 20, 1504–1526, 2009) developed for arbitrary perturbations with no block structure in the linear framework under the boundedness assumption on the system’s coefficients. The latter boundedness assumption is removed in this paper when the decision space is reflexive. The last section provides the aimed application to the convex case.
Resumo:
Our main goal is to compute or estimate the calmness modulus of the argmin mapping of linear semi-infinite optimization problems under canonical perturbations, i.e., perturbations of the objective function together with continuous perturbations of the right-hand side of the constraint system (with respect to an index ranging in a compact Hausdorff space). Specifically, we provide a lower bound on the calmness modulus for semi-infinite programs with unique optimal solution which turns out to be the exact modulus when the problem is finitely constrained. The relationship between the calmness of the argmin mapping and the same property for the (sub)level set mapping (with respect to the objective function), for semi-infinite programs and without requiring the uniqueness of the nominal solution, is explored, too, providing an upper bound on the calmness modulus of the argmin mapping. When confined to finitely constrained problems, we also provide a computable upper bound as it only relies on the nominal data and parameters, not involving elements in a neighborhood. Illustrative examples are provided.
Resumo:
This paper provides new versions of the Farkas lemma characterizing those inequalities of the form f(x) ≥ 0 which are consequences of a composite convex inequality (S ◦ g)(x) ≤ 0 on a closed convex subset of a given locally convex topological vector space X, where f is a proper lower semicontinuous convex function defined on X, S is an extended sublinear function, and g is a vector-valued S-convex function. In parallel, associated versions of a stable Farkas lemma, considering arbitrary linear perturbations of f, are also given. These new versions of the Farkas lemma, and their corresponding stable forms, are established under the weakest constraint qualification conditions (the so-called closedness conditions), and they are actually equivalent to each other, as well as equivalent to an extended version of the so-called Hahn–Banach–Lagrange theorem, and its stable version, correspondingly. It is shown that any of them implies analytic and algebraic versions of the Hahn–Banach theorem and the Mazur–Orlicz theorem for extended sublinear functions.
Resumo:
The multiobjective optimization model studied in this paper deals with simultaneous minimization of finitely many linear functions subject to an arbitrary number of uncertain linear constraints. We first provide a radius of robust feasibility guaranteeing the feasibility of the robust counterpart under affine data parametrization. We then establish dual characterizations of robust solutions of our model that are immunized against data uncertainty by way of characterizing corresponding solutions of robust counterpart of the model. Consequently, we present robust duality theorems relating the value of the robust model with the corresponding value of its dual problem.
Resumo:
The evolution of CRISPR–cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR–cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR–Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.