4 resultados para RIGID-ION MODEL

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the analytical models devoted to determine the acoustic properties of a rigid perforated panel consider the acoustic impedance of a single hole and then use the porosity to determine the impedance for the whole panel. However, in the case of not homogeneous hole distribution or more complex configurations this approach is no longer valid. This work explores some of these limitations and proposes a finite element methodology that implements the linearized Navier Stokes equations in the frequency domain to analyse the acoustic performance under normal incidence of perforated panel absorbers. Some preliminary results for a homogenous perforated panel show that the sound absorption coefficient derived from the Maa analytical model does not match those from the simulations. These differences are mainly attributed to the finite geometry effect and to the spatial distribution of the perforations for the numerical case. In order to confirm these statements, the acoustic field in the vicinities of the perforations is analysed for a more complex configuration of perforated panel. Additionally, experimental studies are carried out in an impedance tube for the same configuration and then compared to previous methods. The proposed methodology is shown to be in better agreement with the laboratorial measurements than the analytical approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model Hamiltonians have been, and still are, a valuable tool for investigating the electronic structure of systems for which mean field theories work poorly. This review will concentrate on the application of Pariser–Parr–Pople (PPP) and Hubbard Hamiltonians to investigate some relevant properties of polycyclic aromatic hydrocarbons (PAH) and graphene. When presenting these two Hamiltonians we will resort to second quantisation which, although not the way chosen in its original proposal of the former, is much clearer. We will not attempt to be comprehensive, but rather our objective will be to try to provide the reader with information on what kinds of problems they will encounter and what tools they will need to solve them. One of the key issues concerning model Hamiltonians that will be treated in detail is the choice of model parameters. Although model Hamiltonians reduce the complexity of the original Hamiltonian, they cannot be solved in most cases exactly. So, we shall first consider the Hartree–Fock approximation, still the only tool for handling large systems, besides density functional theory (DFT) approaches. We proceed by discussing to what extent one may exactly solve model Hamiltonians and the Lanczos approach. We shall describe the configuration interaction (CI) method, a common technology in quantum chemistry but one rarely used to solve model Hamiltonians. In particular, we propose a variant of the Lanczos method, inspired by CI, that has the novelty of using as the seed of the Lanczos process a mean field (Hartree–Fock) determinant (the method will be named LCI). Two questions of interest related to model Hamiltonians will be discussed: (i) when including long-range interactions, how crucial is including in the Hamiltonian the electronic charge that compensates ion charges? (ii) Is it possible to reduce a Hamiltonian incorporating Coulomb interactions (PPP) to an 'effective' Hamiltonian including only on-site interactions (Hubbard)? The performance of CI will be checked on small molecules. The electronic structure of azulene and fused azulene will be used to illustrate several aspects of the method. As regards graphene, several questions will be considered: (i) paramagnetic versus antiferromagnetic solutions, (ii) forbidden gap versus dot size, (iii) graphene nano-ribbons, and (iv) optical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the beginning of 3D computer vision problems, the use of techniques to reduce the data to make it treatable preserving the important aspects of the scene has been necessary. Currently, with the new low-cost RGB-D sensors, which provide a stream of color and 3D data of approximately 30 frames per second, this is getting more relevance. Many applications make use of these sensors and need a preprocessing to downsample the data in order to either reduce the processing time or improve the data (e.g., reducing noise or enhancing the important features). In this paper, we present a comparison of different downsampling techniques which are based on different principles. Concretely, five different downsampling methods are included: a bilinear-based method, a normal-based, a color-based, a combination of the normal and color-based samplings, and a growing neural gas (GNG)-based approach. For the comparison, two different models have been used acquired with the Blensor software. Moreover, to evaluate the effect of the downsampling in a real application, a 3D non-rigid registration is performed with the data sampled. From the experimentation we can conclude that depending on the purpose of the application some kernels of the sampling methods can improve drastically the results. Bilinear- and GNG-based methods provide homogeneous point clouds, but color-based and normal-based provide datasets with higher density of points in areas with specific features. In the non-rigid application, if a color-based sampled point cloud is used, it is possible to properly register two datasets for cases where intensity data are relevant in the model and outperform the results if only a homogeneous sampling is used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growing models have been widely used for clustering or topology learning. Traditionally these models work on stationary environments, grow incrementally and adapt their nodes to a given distribution based on global parameters. In this paper, we present an enhanced unsupervised self-organising network for the modelling of visual objects. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product.