13 resultados para REPRESENTACION PROPORCIONAL
em Universidad de Alicante
Resumo:
El objetivo de este estudio es analizar la influencia del esquema aditivo en el desarrollo del razonamiento proporcional en estudiantes de educación secundaria. 558 estudiantes de educación secundaria respondieron a un cuestionario de problemas proporcionales y no proporcionales. Los resultados indican (i) que la capacidad de los estudiantes en identificar las relaciones proporcionales en los problemas proporcionales no implica necesariamente que sean capaces de identificar correctamente las relaciones aditivas en los problemas no proporcionales y viceversa; y (ii) que el tipo de relación multiplicativa entre las cantidades (entera o no entera) influía en el nivel de éxito en la resolución de los problemas proporcionales y no proporcionales.
Resumo:
El objetivo de este estudio es determinar perfiles de estudiantes y su variación a lo largo de la Educación Primaria y Secundaria cuando resuelven problemas proporcionales y no proporcionales. 755 estudiantes de Educación Primaria y Secundaria respondieron a un cuestionario con diferentes tipos de problemas proporcionales y no proporcionales. El análisis de las respuestas nos permitió identificar cinco perfiles que muestran la utilización de relaciones aditivas independientemente del tipo de problema por los estudiantes de Educación Primaria y la utilización de proporciones independientemente del tipo de problema por los estudiantes de Educación Secundaria. Estos resultados indican que el éxito en los problemas proporcionales no implica necesariamente que los estudiantes hayan sido capaces de construir el significado de la idea de razón.
Resumo:
Un dominio particular del conocimiento matemático para la enseñanza es el conocimiento de matemáticas especializado. Este estudio se centra en examinar el conocimiento de matemáticas especializado en el ámbito del razonamiento proporcional de un grupo de estudiantes para maestro de Educación Primaria. Los resultados muestran que los estudiantes para maestro tienen un conocimiento especializado sobre el razonamiento proporcional limitado puesto de manifiesto por la dificultad en identificar situaciones no proporcionales, en desarrollar formas de razonar en relación a la construcción de la unidad y en manejar el significado multiplicativo de la idea de operador.
Resumo:
La idea del Conocimiento de Matemáticas para Enseñar (MKT) implica la relación entre el conocimiento de matemáticas y el conocimiento de contenido pedagógico. Investigaciones previas han identificado diferentes dominios en el conocimiento de matemáticas para enseñar: conocimiento del contenido matemático que es el conocimiento de matemáticas que permite a los profesores implicarse en tareas específicas de la enseñanza, conocimiento del contenido pedagógico que está centrado en cuestiones de aprendizaje de los estudiantes y de la enseñanza y conocimiento del contenido del currículum. Un reto en los programas de formación de maestros es diseñar entornos de aprendizaje donde los estudiantes para maestro puedan desarrollar estos dominios del conocimiento. En este trabajo se describe un módulo de enseñanza del Grado en Maestro en Educación Primaria centrado en el objetivo de desarrollar el Conocimiento de Matemáticas para Enseñar en el tópico matemático específico del razonamiento proporcional y los primeros resultados obtenidos.
Resumo:
Esta investigación presenta un estudio cuyo objetivo es identificar aspectos que apoyan el desarrollo de la mirada profesional en estudiantes para profesores de matemáticas en un contexto b-learning. Analizamos las producciones de un grupo de estudiantes para profesores de matemáticas de educación secundaria (documentos escritos y participaciones en un debate on-line) cuando analizaban el razonamiento proporcional de estudiantes de educación secundaria. Los resultados indican que la interacción en el debate en línea permitió a algunos estudiantes para profesor mejorar su capacidad de identificar e interpretar aspectos relevantes del pensamiento matemático de los estudiantes de educación secundaria. Estos resultados indican que el desarrollo de “una mirada profesional” del profesor es un proceso complicado pero que la posibilidad de construir un discurso progresivo en línea es un factor importante para su desarrollo.
Resumo:
La competencia docente del maestro ―mirar con sentido el pensamiento matemático de los estudiantes implica identificar los hechos relevantes e interpretarlos para dotarlos de significado y poder tomar decisiones de acción. Este estudio se centra en caracterizar la competencia ―mirar con sentido el pensamiento matemático de los estudiantes en el dominio específico del razonamiento proporcional. Los análisis realizados han permitido identificar y caracterizar cuatro niveles de desarrollo considerando la manera en la que los estudiantes para maestro identifican e interpretaban aspectos del razonamiento proporcional a partir de las respuestas de estudiantes a problemas proporcionales y no proporcionales.
Resumo:
Comunicación presentada en el III Congreso Internacional de la Asociación Española de Investigación de la Comunicación, AE-IC 2012, Tarragona, 18-20 enero 2012.
Resumo:
Este estudio analiza las relaciones implicativas entre las estrategias usadas por 136 estudiantes de primer curso de educación secundaria en la resolución de problemas lineales y no lineales. En primer lugar, se describen las estrategias ocupadas por los alumnos y después, empleando el software CHIC, se identifican sus relaciones implicativas. Los resultados muestran que es importante que los estudiantes comprendan la idea de razón para que sean capaces de identificar las situaciones lineales; de igual manera, aportan información sobre los posibles precursores del desarrollo del razonamiento proporcional en los estudiantes de educación secundaria.
Resumo:
El objetivo de este trabajo es caracterizar la flexibilidad, entendida como habilidad para modificar la estrategia de resolución de un problema cuando se modifica la demanda de la tarea, de estudiantes de educación secundaria (12-16 años) en problemas de reconocimiento de patrones con varios apartados. Se utiliza una metodología de tipo cualitativo analizando las respuestas de los estudiantes en base a dos criterios: corrección de las respuestas y estrategias de resolución, y agrupando las que presentan características semejantes. Los resultados indican tres perfiles de estudiantes en relación a la flexibilidad en el uso de estrategias y el éxito alcanzado. El primero agrupa a los estudiantes que usan sólo la estrategia recursiva; la mayor parte de ellos se bloquea al aumentar la demanda cognitiva de la tarea; predominan los estudiantes de 12-13 años. El segundo perfil corresponde a los que cambian de una estrategia recursiva a una aproximación proporcional dando un resultado incorrecto; es más frecuente en los estudiantes de 13-14 años. Finalmente, el tercer perfil agrupa a los estudiantes que al aumentar la demanda cognitiva de la tarea cambian con éxito de una estrategia recursiva a una funcional; su frecuencia aumenta con la edad. Se concluye que la flexibilidad necesaria para identificar patrones cuando se incrementa la demanda de la tarea está relacionada con los conocimientos de los estudiantes y con el control y la regulación del proceso de resolución. Por otra parte, los estudiantes más jóvenes manifestaron menor grado de flexibilidad que los más mayores.
Resumo:
Introducción. El cáncer de cuello de útero (CCU), segunda causa de mortalidad por cáncer en mujeres, está asociado a la infección por virus de papiloma humano (VPH), cuya máxima prevalencia se sitúa entre los 20 y 24 años de edad. Desde 2006 se dispone de una vacuna contra el VPH. El objetivo de este estudio es evaluar los conocimientos sobre CCU, la infección por VPH y su vacuna, valorando su aceptabilidad en población universitaria. Métodos. Estudio transversal sobre 1.750 estudiantes de la Universidad de Alicante (2008) seleccionados al azar, proporcional por sexo y estudios, mediante un cuestionario ad-hoc validado. Se calcularon porcentajes, intervalos de confianza, tablas de contingencia según sexo, edad y tipo de estudios, calculando odds ratios ajustadas (OR). Resultados. Muestra con 58,6% mujeres y 6,6% de estudiantes biosanitarios. Un 87,3% dispuestos a vacunarse frente al VPH, el 94,3% vacunaría a sus hijas, un 48,0% había oído hablar de la vacuna. El 90,6% tiene bajos conocimiento sobre la infección por VPH y un 82,2% sobre la vacuna. Un 22,4% manifiesta conocer la asociación entre VPH y CCU. Las mujeres registran OR mayores en conocimientos y predisposición a vacunarse. La aceptabilidad de la vacuna contra VPH se asocia con el sexo y la confianza en las vacunas como método preventivo, la influencia de los conocimientos previos es escasa sobre la predisposición vacunal. Conclusiones. Alta aceptabilidad de la vacuna en el periodo estudiado. Aumentar la confianza hacia las vacunas puede influir en una mejor predisposición a vacunarse.
Resumo:
El objetivo de este estudio es aportar información sobre el papel que desempeña el conocimiento de matemáticas de los estudiantes para maestro (EPM) cuando piensan en el aprendizaje de las matemáticas de los estudiantes de primaria. Nuestro estudio se centra en el razonamiento up and down que es una de las componentes que facilitan el desarrollo del razonamiento proporcional. 92 EPM resolvieron una tarea en la que tenían que interpretar las respuestas de estudiantes de educación primaria a un problema que implicaba el razonamiento up and down. Identificamos tres perfiles de EPM caracterizados por la relación entre el conocimiento de matemáticas y la competencia de reconocer el desarrollo del razonamiento up and down en los estudiantes.
Resumo:
Este estudio examina cómo los estudiantes para maestro identifican evidencias del razonamiento up and down en los estudiantes de primaria. Este razonamiento implica dos procesos: la reconstrucción de la unidad y la representación de fracciones. 92 estudiantes para maestro respondieron una tarea que consistía en analizar tres respuestas de estudiantes de educación primaria a un problema de proporcionalidad que mostraban diferentes características de esta manera de razonar. En este estudio presentamos algunos aspectos del análisis que estamos realizando para categorizar la manera en la que los estudiantes para maestro reconocen evidencias de este razonamiento, y cómo este reconocimiento se relaciona con la manera en la que reconocen los elementos matemáticos relevantes para resolver el problema.
Resumo:
El origen de la normativa escrita sobre el uso de las aguas en el territorio peninsular levantino plantea diversas incógnitas. Las primera de ellas sobre los quienes fueron los protagonistas en la redacción y determinación de ese derecho. La segunda sobre el papel que la costumbre de los sarracenos desempeñó en la preservación de tradiciones jurídicas, mantenimiento de infraestructuras y gestión del agua. La tercera tiene que ver con el modo de aunar intereses de comunidades distintas desde el punto de vista religioso y jurídico sobre el derecho de uso de forma equitativa y proporcional a necesidades no necesariamente coincidentes. Lo cierto es que las fuentes conservadas sobre el proceso de reconquista y población siguen siendo una de las mejores referencias para despejar incógnitas y justificar la tradición y pervivencia de un derecho inmemorial y vigente en algunas de sus formas y manifestaciones, no solo en el marco levantino sino en otros muchos espacios de la cuenca mediterránea con idénticas características medioambientales y geo-climáticas.