20 resultados para Pt(111) electrodes

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interfacial properties of Pt(111) single crystal electrodes have been investigated in the pH range 3 < pH < 5 in order to obtain information about the acidity of electrosorbed water. Proper experimental conditions are defined to avoid local pH changes while maintaining the absence of specifically adsorbed anions and preserving the cleanliness of the solution. For this purpose, buffer solutions resulting from mixtures of NaF and HClO4 are used. Total charge curves are obtained at different pHs from the integration of the voltammetric currents in combination with CO charge displacement experiments. Analysis of the composition of the interphase as a function of the pH provides information for the understanding of the notion of interfacial pH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of ethanol (EtOH) at Pt(111) electrodes is dominated by the 4e path leading to acetic acid. The inclusion of surface defects such as those present on stepped surfaces leads to an increase of the reactivity towards the most desirable 12e path leading to CO2 as final product. This path is also favored when the methyl group is more oxidized, as in the case of ethylene glycol (EG) that spontaneously decomposes to CO on Pt(111) electrodes, thus showing a more effective breaking of the C-C bond. Some trends in reactivity can be envisaged when other derivative molecules are compared at well-ordered electrodes. This strategy was used in the past, but the improvement in the electrode pretreatment and the overall information available on the subject suggest that relevant information is still missing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption of nitric oxide (NO) on a Pt (111) surface modified with irreversible adsorbed bismuth adatoms is reported. While the voltammetric results reveal a close interaction between the two co-adsorbed compounds. In-situ infrared spectroscopy and scanning tunnelling microscopy indicate the formation of segregated adlayers. Formation of compressed Bi adlayers with modified redox properties is proposed to reconcile both results. This agrees with the observation of Bi islands in the STM images when NO is coadsorbed, not observed in the absence of NO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interface between a Pt(111) electrode and a room temperature ionic liquid, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with the laser-induced temperature jump method. In this technique, the temperature of the interface is suddenly increased by applying short laser pulses. The change of the electrode potential caused by the thermal perturbation is measured under coulostatic conditions during the subsequent temperature relaxation. This change is mainly related to the reorganization of the solvent components near the electrode surface. The sign of the potential transient depends on the potential of the experiment. At high potential values, positive transients indicate a higher density of anions than cations close the surface, contributing negatively to the potential of the electrode. Decreasing the applied potential to sufficiently low values, the transient becomes negative, meaning that the density of cations becomes then higher at the surface of the electrode. The potential dependence of the interfacial response shows a marked hysteresis depending on the direction in which the applied potential is changed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical reactivity of catechol-derived adlayers is reported at platinum (Pt) single-crystal electrodes. Pt(111) and stepped vicinal surfaces are used as model surfaces possessing well-ordered nanometer-sized Pt(111) terraces ranging from 0.4 to 12 nm. The electrochemical experiments were designed to probe how the control of monatomic step-density and of atomic-level step structure can be used to modulate molecule–molecule interactions during self-assembly of aromatic-derived organic monolayers at metallic single-crystal electrode surfaces. A hard sphere model of surfaces and a simplified band formation model are used as a theoretical framework for interpretation of experimental results. The experimental results reveal (i) that supramolecular electrochemical effects may be confined, propagated, or modulated by the choice of atomic level crystallographic features (i.e.monatomic steps), deliberately introduced at metallic substrate surfaces, suggesting (ii) that substrate-defect engineering may be used to tune the macroscopic electronic properties of aromatic molecular adlayers and of smaller molecular aggregates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated the influence of electrode material and crystallographic structure on electron transfer and biofilm formation of Geobacter sulfurreducens. Single-crystal gold - Au(110), Au(111), Au(210) - and platinum - Pt(100), Pt(110), Pt(111), Pt(210) - electrodes were tested and compared to graphite rods. G. sulfurreducens electrochemically interacts with all these materials with different attachment kinetics and final current production, although redox species involved in the electron transfer to the anode are virtually the same in all cases. Initial bacterial colonization was fastest on graphite up to the monolayer level, whereas gold electrodes led to higher final current densities. Crystal geometry showed to have an important influence, with Au(210) sustaining a current density of up to 1442 (± 101) μA cm- 2 at the steady state, over Au(111) with 961 (± 94) μA cm- 2 and Au(110) with 944 (± 89) μA cm- 2. On the other hand, the platinum electrodes displayed the lowest performances, including Pt(210). Our results indicate that both crystal geometry and electrode material are key parameters for the efficient interaction of bacteria with the substrate and should be considered for the design of novel materials and microbial devices to optimize energy production.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrochemical behavior of methanesulfonic acid on platinum single crystal electrode surfaces is investigated by cyclic voltammetry and infrared spectroscopy measurements. The results are compared with the voltammetric profiles of perchloric and trifluoromethanesulfonic acids. The differences are interpreted in terms of the effect of the anion on the structure of water. No adsorbed species are detected by infrared spectroscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The determination of the potentials of zero total and free charge, pztc and pzfc respectively, were made in a wide pH range by using the CO displacement method and the same calculation assumptions used previously for Pt(1 1 1) electrodes in contact with non-specifically adsorbing anions. Calculation of the pzfc involves, in occasions, long extrapolations that lead us to the introduction of the concept of potential of zero extrapolated charge (pzec). It was observed that the pztc changes with pH but the pzec is independent of this parameter. It was observed that the pztc > pzec at pH > 3.4 but the opposite is true for pH > 3.4. At the latter pH both pzec and pztc coincide. This defines two different pH regions and means that adsorbed hydrogen has to be corrected in the “acidic” solutions at the pztc while adsorbed OH is the species to be corrected in the “alkaline” range. The comparison of the overall picture suggests that neutral conditions at the interface are attained at significantly acidic solutions than those at the bulk.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Local changes of the interfacial pH can significantly affect the rate and mechanism during the course of an electrodic reaction. For instance, different pH values will have a significant effect on the equilibrium properties of both solution and surface species, altering the reactions kinetics. Ethanol oxidation at platinum electrodes in alkaline media involves the fast consumption of OH− species that will change the local pH at the electrode surface, decreasing the reaction rate. In this study, the local pH change during ethanol oxidation in alkaline media is accomplished by using rotating ring-disc electrode (RRDE) experiments. The current at the ring when polarized at the onset of hydrogen evolution serves as a measure of the local pH in the vicinity of the electrode. The results show that the current at the ring at 0.1 V (vs. RHE) becomes more negative during ethanol oxidation, owing to a change in the equilibrium potential of the hydrogen evolution reaction caused by a change in the local pH.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to deepen the knowledge about the origin of the CO preoxidation process and the intrinsic catalytic activity of Pt superficial steps toward CO oxidation, a series of CO stripping experiments were performed on stepped Pt electrodes in acidic medium. For the occurrence of CO preoxidation, it was found that it arises (reproducibly) whenever four interconnected conditions are simultaneously fulfilled: (1) CO adsorption at potentials lower than about 0.2 V; (2) on surfaces saturated with COads; (3) in the presence of traces of CO in solution; (4) in the presence of surface steps. If any of these four conditions is not satisfied, the CO preoxidation pathway does not appear, even though the steps on the electrode surface are completely covered by CO. By controlling the removal of the CO adlayer (voltammetrically), we show that once the CO adlayer has been partially oxidized, the (111) terrace sites of stepped surfaces are released earlier than the (110) step sites. Moreover, if (110) steps are selectively decorated with CO, its oxidation occurs only at potentials ∼150 mV higher than the CO preoxidation peak. Our results systematically demonstrate that step sites are less active to oxidize CO than those ones responsible for the CO preoxidation process. Once the sites responsible for the CO preoxidation are made free, there is no apparent motion of the remaining adsorbed CO layer, suggesting that the activation of the surface controls the whole process, rather than the diffusion of COads toward hypothetically “most active sites”. Voltammetric and chronoamperometric experiments performed on partially covered CO adlayers suggest that adsorbed CO behave as a motionless species during its oxidation, in which the CO adlayer is removed piece by piece. By means of in situ FTIR experiments, the stretching frequency of CO selectively adsorbed on (110) step sites was examined. Band frequency results confirm that those molecules adsorbed on steps are fully coupled with the adsorbed CO on (111) terraces when the surface reaches full coverage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A conducting bridge of a single hydrogen molecule between Pt electrodes is formed in a break junction experiment. It has a conductance near the quantum unit, G0=2e2∕h, carried by a single channel. Using point-contact spectroscopy three vibration modes are observed and their variation upon isotope substitution is obtained. The stretching dependence for each of the modes allows uniquely classifying them as longitudinal or transversal modes. The interpretation of the experiment in terms of a Pt-H2-Pt bridge is verified by density-functional theory calculations for the stability, vibrational modes, and conductance of the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work carbon supported Pd nanoparticles were prepared and used as electrocatalysts for formic acid electrooxidation fuel cells. The influence of some relevant parameters such as the nominal Pt loading, the Nafion/total solids ratio as well as the Pd loading towards formic acid electrooxidation was evaluated using gold supported catalytic layer electrodes which were prepared using a similar methodology to that employed in the preparation of conventional catalyst coated membranes (CCM). The results obtained show that, for constant Pd loading, the nominal Pd loading and the Nafion percentage on the catalytic layer do not play an important role on the resulting electrocatalytic properties. The main parameter affecting the electrocatalytic activity of the electrodes seems to be the Pd loading, although the resulting activity is not directly proportional to the increased Pd loading. Thus, whereas the Pd loading is multiplied by a factor of 10, the activity is only twice which evidences an important decrease in the Pd utilization. In fact, the results obtained suggest the active layer is the outer one being clearly independent of the catalytic layer thickness. Finally, catalyst coated membranes with Pd catalyst loadings of 0.1, 0.5 and 1.2 mg cm-2 were also tested in a breathing direct formic acid fuel cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments have been carried out in sulfuric and perchloric acid solutions on Pt(S)[n(110) × (100)] electrodes. The comparison between the two different electrolytic media reveals an important influence of the anion in the voltammetric features. Total charge curves have been obtained with the CO charge displacement method in combination with voltammetric measurements. From these curves, the dependence of the pztc with the step density and the strength of the anion adsorption have been analyzed. The problem of the so-called third peak is treated for a series of electrodes that contain (110) terraces, revealing the requirement of (110) domains for occurrence of this adsorption state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electroreduction of nitrate on Pt(1 0 0) electrodes in phosphate buffer neutral solution, pH 7.2, is reported. The sensitivity of the reaction to the crystallographic order of the surface is studied through the controlled introduction of defects by using stepped surfaces with (1 0 0) terraces of different length separated by monoatomic steps, either with (1 1 1) or (1 1 0) symmetry. The results of this study show that nitrate reduction occurs mainly on the well defined (1 0 0) terraces in the potential region where H adsorption starts to decrease, allowing the nitrate anion to access the surface. Adsorbed NO has been detected as a stable intermediate in this media. An oxidation process observed at 0.8 V has been identified as leading to the formation of adsorbed NO and being responsible for a secondary reduction process observed in the subsequent negative scan. Using in situ FTIRS, ammonium was found to be the main product of nitrate reduction. This species can be oxidized at high potentials resulting in adsorbed NO and nitrate (probably with nitrite as intermediate).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present communication studies the adsorption of aniline on platinum single crystal electrodes and the electrochemical properties of the first layers of polyaniline(PANI) grown on those platinum surfaces. The adsorption process was studied in aqueous acidic solution (0.1 M HClO4) and the electrochemical properties of thin films of PANI in both aqueous (1 M HClO4) and non-aqueous media (tetrabutyl ammonium hexafluorophosphate (TBAPF6) with additions of methanesulphonic acid in acetonitrile). First of all, it was found that the adsorption of aniline on platinum single crystal surfaces is a surface sensitive process, and even more important that the adsorption features found at low concentrations (5 × 10−5 M) can be directly correlated to the electrochemical properties of thin films of PANI in the very early stages of polymerization. The Pt(1 1 0) surface was found to be more suitable to obtain polymers with more reversible redox transitions when studied in aqueous media (1 M HClO4). This is in good agreement with the higher polymerization rates found on this surface compared to Pt(1 0 0) and Pt(1 1 1). Finally the differences in ionic exchange rate were greatly enhanced when they were studied in organic media. The AC 250 Hz response in the case of the thin films synthesized on Pt(1 1 0) is about twice greater than that obtained in the other basal planes using polymer layers with the same thickness.