10 resultados para Project monitoring
em Universidad de Alicante
Resumo:
This paper presents an analysis of the performance of TerraSAR-X for subsidence monitoring in urban areas. The city of Murcia has been selected as a test-site due to its high deformation rate and the set of extensometers deployed along the city that provide validation data. The obtained results have been compared with those obtained from ERS/ENVISAT data belonging to the same period and validated with the in-situ measurements.
Resumo:
This study was partially financed by the Spanish Ministry of Education and Science and EU FEDER under project TEC2005-06863, by the Valencia Regional Government under projects GV006/179 and ACOMP07/087, and by the University of Alicante under projects VIGROB2004102, VIGROB-053, and VIGROB-114.
Resumo:
In order to evaluate the influence of particle transport episodes on particle number concentration temporal trends at both urban and high-altitude (Aitana peak-1558 m a.s.l.) stations, a simultaneous sampling campaign from October 2011 to September 2012 was performed. The monitoring stations are located in southeastern Spain, close to the Mediterranean coast. The annual average value of particle concentration obtained in the larger accumulation mode (size range 0.25–1 μm) at the mountain site, 55.0 ± 3.0 cm− 3, was practically half that of the value obtained at the urban station (112.0 ± 4.0 cm− 3). The largest difference between both stations was recorded during December 2011 and January 2012, when particles at the mountain station registered the lowest values. It was observed that during urban stagnant episodes, particle transport from urban sites to the mountain station could take place under specific atmospheric conditions. During these transports, the major particle transfer is produced in the 0.5–2 μm size range. The minimum difference between stations was recorded in summer, particularly in July 2012, which is most likely due to several particle transport events that affected only the mountain station. The particle concentration in the coarse mode was very similar at both monitoring sites, with the biggest difference being recorded during the summer months, 0.4 ± 0.1 cm− 3 at the urban site and 0.9 ± 0.1 cm− 3 at the Aitana peak in August 2012. Saharan dust outbreaks were the main factor responsible for these values during summer time. The regional station was affected more by these outbreaks, recording values of > 4.0 cm− 3, than the urban site. This long-range particle transport from the Sahara desert also had an effect upon O3 levels measured at the mountain station. During periods affected by Saharan dust outbreaks, ozone levels underwent a significant decrease (3–17%) with respect to its mean value.
Resumo:
The present work has two dimensions: analytical and environmental. On the one hand we proved that thermogravimetric analysis can be used to perform fast characterization of oil refinery sludge. To this end, thermogravimetric curves were deconvoluted by using autocatalytic kinetics to take into account acceleratory phases in a thermal degradation performed in oxygen-containing atmosphere or at high heating rates. Based on thermogravimetric results, oil refinery sludge was modeled in terms of various fractions (pseudo-components) which degrade as major oil cuts. On the other hand, as an alternative to landfill, we have seen that Soxhlet extraction allows recovery almost half of the weight of sludge as a mixture of hydrocarbons, similar to gas–oil, which burns without residue. This ensures both, waste inerting and significant reduction in sludge volume.
Resumo:
Surface displacement at the dykes of La Pedrera reservoir (SE Spain) has been measured by satellite differential Synthetic Aperture Radar (SAR) interferometry. At the main dyke, a displacement of about 13 cm along the satellite line of sight has been estimated between August 1995 and May 2010, from a dataset composed by ERS-1, ERS-2 and Envisat-ASAR images. Two independent short-term processing tasks were also carried out with ERS-2/Envisat-ASAR (from June 2008 to May 2010) and TerraSAR-X (from August 2008 to June 2010) images which have shown similar spatial and temporal displacement patterns. The joint analysis of historical instrument surveys and DInSAR-derived data has allowed the identification of a long-term deformation process which is reflected at the dam's surface and is also clearly recognizable in the inspection gallery. The plausible causes of the displacements measured by DInSAR are also discussed in the paper. Finally, DInSAR data have been used to compute the long-term settlement of La Pedrera dam, showing a good agreement with external studies. Consequently, this work demonstrates the integration of DInSAR with in-situ techniques which helps provide a complete spatial vision of the displacements in the dam thereby helping to differentiate the causal mechanisms.
Resumo:
Nowadays, the intensive use of Technology Information (TI) provide solutions to problems of the high population density, energy conservation and cities management. This produces a newest concept of the city, Smart City. But the inclusion of TI in the city brings associated new problems, specifically the generation of electromagnetic fields from the available and new technological infrastructures installed in the city that did not exist before. This new scenario produces a negative effect on a particular group of the society, as are the group of persons with electromagnetic hypersensitivity pathology. In this work we propose a system that would allow you to detect and prevent the continuous exposure to such electromagnetic fields, without the need to include more devices or infrastructure which would only worsen these effects. Through the use of the architecture itself and Smart City services, it is possible to infer the necessary knowledge to know the situation of the EMF radiation and thus allow users to avoid the areas of greatest conflict. This knowledge, not only allows us to get EMF current map of the city, but also allows you to generate predictions and detect future risk situations.
Resumo:
Today, faced with the constant rise of the Smart cities around the world, there is an exponential increase of the use and deployment of information technologies in the cities. The intensive use of Information Technology (IT) in these ecosystems facilitates and improves the quality of life of citizens, but in these digital communities coexist individuals whose health is affected developing or increasing diseases such as electromagnetic hypersensitivity. In this paper we present a monitoring, detection and prevention system to help this group, through which it is reported the rates of electromagnetic radiation in certain areas, based on the information that the own Smart City gives us. This work provides a perfect platform for the generation of predictive models for detection of future states of risk for humans.
Resumo:
In the current study, the relationship between current and biomass and bio-adhesion mechanism of electrogenic biofilm on electrode were investigated using EQCM and ATR-SEIRAS linking electrochemistry. The results indicated that cellular biomass of biofilm on QCM-crystal surface showed maximum value of 6.0 μg/cm2 in initial batch and 11.5 μg/cm2 in the second batch on mature biofilm, producing a similar maximum current density of 110 μA/μg. Especially, the optimum cell biomass linking high electricity production ratio (110 μA/μg) occurred before maximum biomass coming, implying that over-growth mature biofilm is not an optimum state for enhancing power output of MFCs. On the other hand, the spectra using ATR-SEIRAS technique linking electrochemistry obviously exhibited water structure adsorption change at early biofilm formation and meanwhile the water adsorption accompanied the adsorbed bacteria and the bound cells population on the electrode increased with time. Meanwhile, the direct contact of bacteria and electrode via outer-membrane protein can be confirmed via a series spectra shift at amide I and amide II modes and water movement from negative bands displacing by adsorbed bacteria. Our study provided supplementary information about the interaction between the microbes and electrode beyond traditional electrochemistry.
Resumo:
In this paper, a novel approach for exploiting multitemporal remote sensing data focused on real-time monitoring of agricultural crops is presented. The methodology is defined in a dynamical system context using state-space techniques, which enables the possibility of merging past temporal information with an update for each new acquisition. The dynamic system context allows us to exploit classical tools in this domain to perform the estimation of relevant variables. A general methodology is proposed, and a particular instance is defined in this study based on polarimetric radar data to track the phenological stages of a set of crops. A model generation from empirical data through principal component analysis is presented, and an extended Kalman filter is adapted to perform phenological stage estimation. Results employing quad-pol Radarsat-2 data over three different cereals are analyzed. The potential of this methodology to retrieve vegetation variables in real time is shown.
Resumo:
In this work, we describe the growth of NaCl crystals by evaporating droplets of aqueous solution while monitoring them with infrared thermography. Over the course of the evaporation experiments, variations in the recorded signal were observed and interpreted as being the result of evaporation and crystallisation. In particular, we observed sharp and transient decreases in the thermosignal during the later stages of high-concentration drop evaporation. The number of such events per experiment, referred to as “pop-cold events”, varied from 1 to over 100 and had durations from 1 to 15 s. These events are interpreted as a consequence from the top-supplied creeping (TSC) of the solution feeding the growth of efflorescence-like crystals. This phenomenon occurred when the solution was no longer macroscopically visible. In this case, efflorescence-like crystals with a spherulite shape grew around previously formed cubic crystals. Other crystal morphologies were also observed but were likely fed by mass diffusion or bottom-supplied creeping (BSC) and were not associated with “pop-cold events”; these morphologies included the cubic crystals at the centre, ring-shaped at the edge of droplets and fan-shaped crystals. After complete evaporation, an analysis of the numbers and sizes of the different types of crystals was performed using image processing. Clear differences in their sizes and distribution were observed in relation to the salt concentration. Infrared thermography permitted a level of quantification that previously was only possible using other techniques. As example, the intermittent efflorescence growth process was clearly observed and measured for the first time using infrared thermography.