6 resultados para Power flow algorithm
em Universidad de Alicante
Resumo:
To validate clinically an algorithm for correcting the error in the keratometric estimation of corneal power by using a variable keratometric index of refraction (nk) in a normal healthy population.
Resumo:
Purpose: To calculate theoretically the errors in the estimation of corneal power when using the keratometric index (nk) in eyes that underwent laser refractive surgery for the correction of myopia and to define and validate clinically an algorithm for minimizing such errors. Methods: Differences between corneal power estimation by using the classical nk and by using the Gaussian equation in eyes that underwent laser myopic refractive surgery were simulated and evaluated theoretically. Additionally, an adjusted keratometric index (nkadj) model dependent on r1c was developed for minimizing these differences. The model was validated clinically by retrospectively using the data from 32 myopic eyes [range, −1.00 to −6.00 diopters (D)] that had undergone laser in situ keratomileusis using a solid-state laser platform. The agreement between Gaussian (PGaussc) and adjusted keratometric (Pkadj) corneal powers in such eyes was evaluated. Results: It was found that overestimations of corneal power up to 3.5 D were possible for nk = 1.3375 according to our simulations. The nk value to avoid the keratometric error ranged between 1.2984 and 1.3297. The following nkadj models were obtained: nkadj= −0.0064286r1c + 1.37688 (Gullstrand eye model) and nkadj = −0.0063804r1c + 1.37806 (Le Grand). The mean difference between Pkadj and PGaussc was 0.00 D, with limits of agreement of −0.45 and +0.46 D. This difference correlated significantly with the posterior corneal radius (r = −0.94, P < 0.01). Conclusions: The use of a single nk for estimating the corneal power in eyes that underwent a laser myopic refractive surgery can lead to significant errors. These errors can be minimized by using a variable nk dependent on r1c.
Resumo:
Purpose. To evaluate theoretically in normal eyes the influence on IOL power (PIOL) calculation of the use of a keratometric index (nk) and to analyze and validate preliminarily the use of an adjusted keratometric index (nkadj) in the IOL power calculation (PIOLadj). Methods. A model of variable keratometric index (nkadj) for corneal power calculation (Pc) was used for IOL power calculation (named PIOLadj). Theoretical differences ($PIOL) between the new proposed formula (PIOLadj) and which is obtained through Gaussian optics (PIOL Gauss) were determined using Gullstrand and Le Grand eye models. The proposed new formula for IOL power calculation (PIOLadj) was prevalidated clinically in 81 eyes of 81 candidates for corneal refractive surgery and compared with Haigis, HofferQ, Holladay, and SRK/T formulas. Results. A theoretical PIOL underestimation greater than 0.5 diopters was present in most of the cases when nk = 1.3375 was used. If nkadj was used for Pc calculation, a maximal calculated error in $PIOL of T0.5 diopters at corneal vertex in most cases was observed independently from the eye model, r1c, and the desired postoperative refraction. The use of nkadj in IOL power calculation (PIOLadj) could be valid with effective lens position optimization nondependent of the corneal power. Conclusions. The use of a single value of nk for Pc calculation can lead to significant errors in PIOL calculation that may explain some IOL power overestimations with conventional formulas. These inaccuracies can be minimized by using the new PIOLadj based on the algorithm of nkadj.
Resumo:
Purpose. To validate clinically a new method for estimating the corneal power (P,) using a variable keratometric index (nkadj) in eyes with previous laser refractive surgery. Setting. University of Alicante and Medimar International Hospital (Oftalmar), Alicante, (Spain). Design. Retrospective case series. Methods. This retrospective study comprised 62 eyes of 62 patients that had undergone myopic LASIK surgery. An algorithm for the calculation of 11kadj was used for the estimation of the adjusted keratometric corneal power (Pkadj). This value was compared with the classical keratometric corneal power (Pk), the True Net Power (TNP), and the Gaussian corneal power (PcGauss). Likewise, Pkadj was compared with other previously described methods. Results. Differences between PcGauss and P, values obtained with all methods evaluated were statistically significant (p < 0.01). Differences between Pkadj and PcGauss were in the limit of clinical significance (p < 0.01, loA [ - 0.33,0.60] D). Differences between Pkadj and TNP were not statistically and clinically significant (p = 0.319, loA [- 0.50,0.44] D). Differences between Pkadj and previously described methods were statistically significant (p < 0.01), except with PcHaigisL (p = 0.09, loA [ - 0.37,0.29] D). Conclusion. The use of the adjusted keratometric index (nkadj) is a valid method to estimate the central corneal power in corneas with previous myopic laser refractive surgery, providing results comparable to PcHaigisL.
Resumo:
Purpose: To evaluate the predictability of the refractive correction achieved with a positional accommodating intraocular lenses (IOL) and to develop a potential optimization of it by minimizing the error associated with the keratometric estimation of the corneal power and by developing a predictive formula for the effective lens position (ELP). Materials and Methods: Clinical data from 25 eyes of 14 patients (age range, 52–77 years) and undergoing cataract surgery with implantation of the accommodating IOL Crystalens HD (Bausch and Lomb) were retrospectively reviewed. In all cases, the calculation of an adjusted IOL power (PIOLadj) based on Gaussian optics considering the residual refractive error was done using a variable keratometric index value (nkadj) for corneal power estimation with and without using an estimation algorithm for ELP obtained by multiple regression analysis (ELPadj). PIOLadj was compared to the real IOL power implanted (PIOLReal, calculated with the SRK-T formula) and also to the values estimated by the Haigis, HofferQ, and Holladay I formulas. Results: No statistically significant differences were found between PIOLReal and PIOLadj when ELPadj was used (P = 0.10), with a range of agreement between calculations of 1.23 D. In contrast, PIOLReal was significantly higher when compared to PIOLadj without using ELPadj and also compared to the values estimated by the other formulas. Conclusions: Predictable refractive outcomes can be obtained with the accommodating IOL Crystalens HD using a variable keratometric index for corneal power estimation and by estimating ELP with an algorithm dependent on anatomical factors and age.