2 resultados para Portable architecture. Reassemblable structure. Design process
em Universidad de Alicante
Resumo:
Building Information Modelling (BIM) provides a shared source of information about a built asset, which creates a collaborative virtual environment for project teams. Literature suggests that to collaborate efficiently, the relationship between the project team is based on sympathy, obligation, trust and rapport. Communication increases in importance when working collaboratively but effective communication can only be achieved when the stakeholders are willing to act, react, listen and share information. Case study research and interviews with Architecture, Engineering and Construction (AEC) industry experts suggest that synchronous face-to-face communication is project teams’ preferred method, allowing teams to socialise and build rapport, accelerating the creation of trust between the stakeholders. However, virtual unified communication platforms are a close second-preferred option for communication between the teams. Effective methods for virtual communication in professional practice, such as virtual collaboration environments (CVE), that build trust and achieve similar spontaneous responses as face-to-face communication, are necessary to face the global challenges and can be achieved with the right people, processes and technology. This research paper investigates current industry methods for virtual communication within BIM projects and explores the suitability of avatar interaction in a collaborative virtual environment as an alternative to face-to-face communication to enhance collaboration between design teams’ professional practice on a project. Hence, this paper presents comparisons between the effectiveness of these communication methods within construction design teams with results of further experiments conducted to test recommendations for more efficient methods for virtual communication to add value in the workplace between design teams.
Resumo:
Today, the requirement of professional skills to university students is constantly increasing in our society. In our opinion, the content offered in official degrees need to be nourished with different variables, enriching their global professional knowledge in a parallel way; that is why, in recent years, there is a great multiplicity of complementary courses at university. One of the most socially demanded technical requirements within the architectural, design or engineering field is the management of 3D drawing software, becoming an indispensable reality in these sectors. Thus, this specific training becomes essential over two-dimension traditional design, because the inclusion of great possibilities of spatial development that go beyond conventional orthographic projections (plans, sections or elevations), allowing modelling and rotation of the selected items from multiple angles and perspectives. Therefore, this paper analyzes the teaching methodology of a complementary course for those technicians in the construction industry interested in computer-aided design, using modelling (SketchupMake) and rendering programs (Kerkythea). The course is developed from the technician point of view, by learning computer management and its application to professional development from a more general to a more specific view through practical examples. The proposed methodology is based on the development of real examples in different professional environments such as rehabilitation, new constructions, opening projects or architectural design. This multidisciplinary contribution improves criticism of students in different areas, encouraging new learning strategies and the independent development of three-dimensional solutions. Thus, the practical implementation of new situations, even suggested by the students themselves, ensures active participation, saving time during the design process and the increase of effectiveness when generating elements which may be represented, moved or virtually tested. In conclusion, this teaching-learning methodology improves the skills and competencies of students to face the growing professional demands of society. After finishing the course, technicians not only improved their expertise in the field of drawing but they also enhanced their capacity for spatial vision; both essential qualities in these sectors that can be applied to their professional development with great success.