9 resultados para Pd-based electrocatalysts
em Universidad de Alicante
Resumo:
A range of catalysts based on Pd nanoparticles supported on inorganic supports such as BETA and ZSM-5 zeolites, a silicoaluminophosphate molecular sieve (SAPO-5) and γ-alumina as a standard support have been tested for the total oxidation of naphthalene (100 ppm, total flow 50 ml/min) showing a conversion to carbon dioxide of 100% between 165 and 180 °C for all the analysed catalysts. From the combined use of zeolites with PVP polymer protected Pd based nanoparticles, enhanced properties have been found for the total abatement of naphthalene in contrast with other kinds of catalysts. A Pd/BETA catalyst has been demonstrated to have excellent activity, with a high degree of stability, as shown by time on line experiments maintaining 100% conversion to CO2 during the 48 h tested.
Resumo:
A novel procedure for the preparation of solid Pd(II)-based catalysts consisting of the anchorage of designed Pd(II)-complexes on an activated carbon (AC) surface is reported. Two molecules of the Ar–S–F type (where Ar is a plane-pyrimidine moiety, F a Pd(II)-ligand and S an aliphatic linker) differing in F, were grafted on AC by π–π stacking of the Ar moiety and the graphene planes of the AC, thus favouring the retaining of the metal-complexing ability of F. Adsorption of Pd(II) by the AC/Ar–S–F hybrids occurs via Pd(II)-complexation by F. After deep characterization, the catalytic activities of the AC/Ar–S–F/Pd(II) hybrids on the hydrogenation of 1-octene in methanol as a catalytic test were evaluated. 100% conversion to n-octane at T = 323.1 K and P = 15 bar, was obtained with both catalysts and most of Pd(II) was reduced to Pd(0) nanoparticles, which remained on the AC surface. Reusing the catalysts in three additional cycles reveals that the catalyst bearing the F ligand with a larger Pd-complexing ability showed no loss of activity (100% conversion to n-octane) which is assigned to its larger structural stability. The catalyst with the weaker F ligand underwent a progressive loss of activity (from 100% to 79% in four cycles), due to the constant aggregation of the Pd(0) nanoparticles. Milder conditions, T = 303.1 K and P = 1.5 bar, prevent the aggregation of the Pd(0) nanoparticles in this catalyst allowing the retention of the high catalytic efficiency (100% conversion) in four reaction cycles.
Resumo:
In this work carbon supported Pd nanoparticles were prepared and used as electrocatalysts for formic acid electrooxidation fuel cells. The influence of some relevant parameters such as the nominal Pt loading, the Nafion/total solids ratio as well as the Pd loading towards formic acid electrooxidation was evaluated using gold supported catalytic layer electrodes which were prepared using a similar methodology to that employed in the preparation of conventional catalyst coated membranes (CCM). The results obtained show that, for constant Pd loading, the nominal Pd loading and the Nafion percentage on the catalytic layer do not play an important role on the resulting electrocatalytic properties. The main parameter affecting the electrocatalytic activity of the electrodes seems to be the Pd loading, although the resulting activity is not directly proportional to the increased Pd loading. Thus, whereas the Pd loading is multiplied by a factor of 10, the activity is only twice which evidences an important decrease in the Pd utilization. In fact, the results obtained suggest the active layer is the outer one being clearly independent of the catalytic layer thickness. Finally, catalyst coated membranes with Pd catalyst loadings of 0.1, 0.5 and 1.2 mg cm-2 were also tested in a breathing direct formic acid fuel cell.
Resumo:
Pd and bimetallic Ni50Pd50 nanoparticles protected by polyvinylpyrrolidone (PVP) have been synthesized by the reduction-by-solvent method and deposited on single wall carbon nanotubes (SWCNTs) to be tested as H2 sensors. The SWCNTs were deposited by drop casting from different suspensions. The Pd nanoparticles-based sensors show a very reproducible performance with good sensitivity and very low response times (few seconds) for different H2 concentrations, ranging from 0.2% to 5% vol. H2 in air at atmospheric pressure. The influence of the metal nanoparticle composition, the quality of SWCNTs suspension and the metal loading have been studied, observing that all these parameters play an important role in the H2 sensor performance. Evidence for water formation during the H2 detection on Pd nanoparticles has been found, and its repercussion on the behaviour of the assembled sensors is discussed. The sensor preparation procedure detailed in this work has proven to be simple and reproducible to prepare cost-effective and highly efficient H2 sensors that perform very well under real application conditions.
Resumo:
This work reports on the synthesis of nanosheets of layered titanosilicate JDF-L1 supported on commercial E-type glass fibers with the aim of developing novel nanoarchitectures useful as robust and easy to handle hydrogen adsorbents. The preparation of those materials is carried out by hydrothermal reaction from the corresponding gel precursor in the presence of the glass support. Because of the basic character of the synthesis media, silica from the silicate-based glass fibers can be involved in the reaction, cementing its associated titanosilicate and giving rise to strong linkages on the support with the result of very stable heterostructures. The nanoarchitectures built up by this approach promote the growth and disposition of the titanosilicate nanosheets as a house-of-cards radially distributed around the fiber axis. Such an open arrangement represents suitable geometry for potential uses in adsorption and catalytic applications where the active surface has to be available. The content of the titanosilicate crystalline phase in the system represents about 12 wt %, and this percentage of the adsorbent fraction can achieve, at 298 K and 20 MPa, 0.14 wt % hydrogen adsorption with respect to the total mass of the system. Following postsynthesis treatments, small amounts of Pd (<0.1 wt %) have been incorporated into the resulting nanoarchitectures in order to improve their hydrogen adsorption capacity. In this way, Pd-layered titanosilicate supported on glass fibers has been tested as a hydrogen adsorbent at diverse pressures and temperatures, giving rise to values around 0.46 wt % at 298 K and 20 MPa. A mechanism of hydrogen spillover involving the titanosilicate framework and the Pd nanoparticules has been proposed to explain the high increase in the hydrogen uptake capacity after the incorporation of Pd into the nanoarchitecture.
Resumo:
Catalysts based on palladium nanoparticles supported on different zeolites (BETA, ZSM-5 and Y) were prepared and their catalytic performance in formic acid dehydrogenation was studied. The effects of the zeolite structure and porous texture on the catalytic activity were investigated by comparing the behavior of these samples. The results revealed that the samples based on BETA zeolite are promising catalysts for this application.
Resumo:
Pt–Pd bimetallic nanoparticles supported on graphene oxide (GO) nanosheets were prepared by a sonochemical reduction method in the presence of polyethylene glycol as a stabilizing agent. The synthetic method allowed for a fine tuning of the particle composition without significant changes in their size and degree of aggregation. Detailed characterization of GO-supported Pt–Pd catalysts was carried out by transmission electron microscopy (TEM), AFM, XPS, and electrochemical techniques. Uniform deposition of Pt–Pd nanoparticles with an average diameter of 3 nm was achieved on graphene nanosheets using a novel dual-frequency sonication approach. GO-supported bimetallic catalyst showed significant electrocatalytic activity for methanol oxidation. The influence of different molar compositions of Pt and Pd (1:1, 2:1, and 3:1) on the methanol oxidation efficiency was also evaluated. Among the different Pt/Pd ratios, the 1:1 ratio material showed the lowest onset potential and generated the highest peak current density. The effect of catalyst loading on carbon paper (working electrode) was also studied. Increasing the catalyst loading beyond a certain amount lowered the catalytic activity due to the aggregation of metal particle-loaded GO nanosheets.
Resumo:
Novel hierarchical SiO2 monolithic microreactors loaded with either Pd or Pt nanoparticles have been prepared in fused silica capillaries and tested in the Preferential Oxidation of CO (PrOx) reaction. Pd and Pt nanoparticles were prepared by the reduction by solvent method and the support used was a mesoporous SiO2 monolith prepared by a well-established sol–gel methodology. Comparison of the activity with an equivalent powder catalyst indicated that the microreactors show an enhanced catalytic behavior (both in terms of CO conversion and selectivity) due to the superior mass and heat transfer processes that take place inside the microchannel. TOF values at low CO conversions have been found to be ∼2.5 times higher in the microreactors than in the powder catalyst and the residence time seems to have a noticeable influence over the selectivity of the catalysts designed for this reaction. The Pd and Pt flexible microreactors developed in this work have proven to be effective for the CO oxidation reaction both in the presence and absence of H2, standing out as a very interesting and suitable option for the development of CO purification systems of small dimensions for portable and on-board applications.
Resumo:
In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma–atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w− 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.