3 resultados para PROGENITOR CELLS

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the effect of inactivated microbial stimuli (Candida albicans, Candida glabrata, Saccharomyces boulardii, and Staphylococcus aureus) on the in vitro differentiation of lineage negative (Lin−) hematopoietic progenitor mouse cells. Purified Lin− progenitors were co-cultured for 7 days with the stimuli, and cell differentiation was determined by flow cytometry analysis. All the stimuli assayed caused differentiation toward the myeloid lineage. S. boulardii and particularly C. glabrata were the stimuli that induced in a minor extent differentiation of Lin− cells, as the major population of differentiated cells corresponded to monocytes, whereas C. albicans and S. aureus induced differentiation beyond monocytes: to monocyte-derived dendritic cells and macrophages, respectively. Interestingly, signaling through TLR2 by its pure ligand Pam3CSK4 directed differentiation of Lin− cells almost exclusively to macrophages. These data support the notion that hematopoiesis can be modulated in response to microbial stimuli in a pathogen-dependent manner, being determined by the pathogen-associated molecular patterns and the pattern-recognition receptors involved, in order to generate the populations of mature cells required to deal with the pathogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) are expressed by haematopoietic stem and progenitor cells (HSPCs), and may play a role in haematopoiesis in response to pathogens during infection. We have previously demonstrated that (i) inactivated yeasts of Candida albicans induce in vitro differentiation of HSPCs towards the myeloid lineage, and (ii) soluble TLR agonists induce in vivo their differentiation towards macrophages. In this work, using an in vivo model of HSPCs transplantation, we report for the first time that HSPCs sense C. albicans in vivo and subsequently are directed to produce macrophages by a TLR2-dependent signalling. Purified lineage-negative cells (Lin−) from bone marrow of C57BL/6 mice (CD45.2 alloantigen) were transplanted into B6Ly5.1 mice (CD45.1 alloantigen), which were then injected with viable or inactivated C. albicans yeasts. Transplanted cells were detected in the spleen and in the bone marrow of recipient mice, and they differentiate preferentially to macrophages, both in response to infection or in response to inactivated yeasts. The generation of macrophages was dependent on TLR2 but independent of TLR4, as transplanted Lin− cells from TLR2−/− mice did not give rise to macrophages, whereas Lin− cells from TLR4−/− mice generated macrophages similarly to control cells. Interestingly, the absence of TLR2, or in a minor extent TLR4, gives Lin− cells an advantage in transplantation assays, as increases the percentage of transplanted recovered cells. Our results indicatethat TLR-mediated recognition of C. albicans by HSPCs may help replace and/or increase cells that constitute the first line of defence against the fungus, and suggest that TLR-mediated signalling may lead to reprogramming early progenitors to rapidly replenishing the innate immune system and generate the most necessary mature cells to deal with the pathogen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Unlike fish and amphibians, mammals do not regenerate retinal neurons throughout life. However, neurogenic potential may be conserved in adult mammal retina and it is necessary to identify the factors that regulate retinal progenitor cells (RPC) proliferative capacity to scope their therapeutic potential. Müller cells can be progenitors for retinal neuronal cells and can play an essential role in the restoration of visual function after retinal injury. Some members of the Toll-like receptor (TLR) family, TLR2, TLR3 and TLR4, are related to progenitor cells proliferation. Müller cells are important in retinal regeneration and stable cell lines are useful for the study of retinal stem cell biology. Our purpose was to obtain a Müller-derived cell line with progenitor characteristics and potential interest in regeneration processes. We obtained and characterized a murine Müller-derived cell line (MU-PH1), which proliferates indefinitely in vitro. Our results show that (i) MU-PH1 cells expresses the Müller cell markers Vimentin, S-100, glutamine synthetase and the progenitor and stem cell markers Nestin, Abcg2, Ascl1, α-tubulin and β-III-tubulin, whereas lacks the expression of CRALBP, GFAP, Chx10, Pax6 and Notch1 markers; (ii) MU-PH1 cell line stably express the photoreceptor markers recoverin, transducin, rhodopsin, blue and red/green opsins and also melanopsin; (iii) the presence of opsins was confirmed by the recording of intracellular free calcium levels during light stimulation; (iv) MU-PH1 cell line also expresses the melatonin MT1 and MT2 receptors; (v) MU-PH1 cells express TLR1, 2, 4 and 6 mRNA; (vi) MU-PH1 express TLR2 at cell surface level; (vii) Candida albicans increases TLR2 and TLR6 mRNA expression; (viii) C. albicans or TLR selective agonists (Pam(3)CysSK(4), LPS) did not elicit morphological changes nor TNF-α secretion; (ix) C. albicans and Pam(3)CysSK(4) augmented MU-PH1 neurospheres formation in a statistically significant manner. Our results indicate that MU-PH1 cell line could be of great interest both as a photoreceptor model and in retinal regeneration approaches and that TLR2 may also play a role in retinal cell proliferation.