4 resultados para Optimal Linear Codes
em Universidad de Alicante
Resumo:
This paper is intended to provide conditions for the stability of the strong uniqueness of the optimal solution of a given linear semi-infinite optimization (LSIO) problem, in the sense of maintaining the strong uniqueness property under sufficiently small perturbations of all the data. We consider LSIO problems such that the family of gradients of all the constraints is unbounded, extending earlier results of Nürnberger for continuous LSIO problems, and of Helbig and Todorov for LSIO problems with bounded set of gradients. To do this we characterize the absolutely (affinely) stable problems, i.e., those LSIO problems whose feasible set (its affine hull, respectively) remains constant under sufficiently small perturbations.
Resumo:
Our main goal is to compute or estimate the calmness modulus of the argmin mapping of linear semi-infinite optimization problems under canonical perturbations, i.e., perturbations of the objective function together with continuous perturbations of the right-hand side of the constraint system (with respect to an index ranging in a compact Hausdorff space). Specifically, we provide a lower bound on the calmness modulus for semi-infinite programs with unique optimal solution which turns out to be the exact modulus when the problem is finitely constrained. The relationship between the calmness of the argmin mapping and the same property for the (sub)level set mapping (with respect to the objective function), for semi-infinite programs and without requiring the uniqueness of the nominal solution, is explored, too, providing an upper bound on the calmness modulus of the argmin mapping. When confined to finitely constrained problems, we also provide a computable upper bound as it only relies on the nominal data and parameters, not involving elements in a neighborhood. Illustrative examples are provided.
Resumo:
In this work, we present a systematic method for the optimal development of bioprocesses that relies on the combined use of simulation packages and optimization tools. One of the main advantages of our method is that it allows for the simultaneous optimization of all the individual components of a bioprocess, including the main upstream and downstream units. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The primal dynamic optimization problem optimizes the operating conditions, bioreactor kinetics and equipment sizes, whereas the master levels entails the solution of a tailored mixed-integer linear programming (MILP) model that decides on the values of the integer variables (i.e., number of equipments in parallel and topological decisions). The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external NLP solver implemented in Matlab®. The capabilities of the proposed methodology are illustrated through its application to a typical fermentation process and to the production of the amino acid L-lysine.
Resumo:
This paper studies stability properties of linear optimization problems with finitely many variables and an arbitrary number of constraints, when only left hand side coefficients can be perturbed. The coefficients of the constraints are assumed to be continuous functions with respect to an index which ranges on certain compact Hausdorff topological space, and these properties are preserved by the admissible perturbations. More in detail, the paper analyzes the continuity properties of the feasible set, the optimal set and the optimal value, as well as the preservation of desirable properties (boundedness, uniqueness) of the feasible and of the optimal sets, under sufficiently small perturbations.