10 resultados para Online interaction

em Universidad de Alicante


Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objetivo de esta investigación fue estudiar cómo aprenden estudiantes para profesores de educación secundaria a analizar la enseñanza de las matemáticas como un aspecto del desarrollo de su competencia docente. Para ello, analizamos la estructura argumentativa de una discusión en línea entre estudiantes para profesores de enseñanza secundaria cuando están identificando e interpretando aspectos de la comunicación matemática como un rasgo característico de la enseñanza de las matemáticas. Para realizar el análisis, usamos el esquema de un argumento de Toulmin y centramos nuestra atención en cómo los estudiantes para profesor establecían la relación entre las conclusiones y los datos y cómo usaban las garantías. Los resultados muestran tres características de las estructuras argumentativas generadas por los estudiantes para profesor en un debate en línea que determinan oportunidades para el aprendizaje de la competencia docente “mirar con sentido” la enseñanza de las matemáticas: refinar garantías para apoyar una conclusión, discutir sobre cómo se debe establecer una conclusión para que sea admitida, y poner en duda las conclusiones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins, and excitons are treated quantum mechanically shows that a single polariton induces a sizable indirect anisotropic exchange interaction between spins. At sufficiently low temperatures strong ferromagnetic correlations show up without an appreciable increase in exciton population. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling is still significant at 1 K: spin-spin correlation around 3 for exciton occupation smaller than 0.3. We find that the interaction mediated by photon-polaritons is 10 times stronger than the one induced by a classical field for equal Rabi splitting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the electronic properties of electrons in flat and curved zigzag graphene nanoribbons using a tight-binding model within the Slater Koster approximation, including spin-orbit interaction. We find that a constant curvature across the ribbon dramatically enhances the action of the spin-orbit term, strongly influencing the spin orientation of the edge states: Whereas spins are normal to the surface in the case of flat ribbons, this is no longer the case for curved ribbons. This effect is very pronounced, the spins deviating from the normal to the ribbon, even for very small curvature and a realistic spin orbit coupling of carbon. We find that curvature results also in an effective second neighbor hopping that modifies the electronic properties of zigzag graphene ribbons. We discuss the implications of our findings in the spin Hall phase of curved graphene ribbons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the optically induced coupling between spins mediated by polaritons in a planar microcavity. In the strong-coupling regime, the vacuum Rabi splitting introduces anisotropies in the spin coupling. Moreover, due to their photonlike mass, polaritons provide an extremely long spin coupling range. This suggests the realization of two-qubit all-optical quantum operations within tens of picoseconds with spins localized as far as hundreds of nanometers apart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The delineation of functional economic areas, or market areas, is a problem of high practical relevance, since the delineation of functional sets such as economic areas in the US, Travel-to-Work Areas in the United Kingdom, and their counterparts in other OECD countries are the basis of many statistical operations and policy making decisions at local level. This is a combinatorial optimisation problem defined as the partition of a given set of indivisible spatial units (covering a territory) into regions characterised by being (a) self-contained and (b) cohesive, in terms of spatial interaction data (flows, relationships). Usually, each region must reach a minimum size and self-containment level, and must be continuous. Although these optimisation problems have been typically solved through greedy methods, a recent strand of the literature in this field has been concerned with the use of evolutionary algorithms with ad hoc operators. Although these algorithms have proved to be successful in improving the results of some of the more widely applied official procedures, they are so time consuming that cannot be applied directly to solve real-world problems. In this paper we propose a new set of group-based mutation operators, featuring general operations over disjoint groups, tailored to ensure that all the constraints are respected during the operation to improve efficiency. A comparative analysis of our results with those from previous approaches shows that the proposed algorithm systematically improves them in terms of both quality and processing time, something of crucial relevance since it allows dealing with most large, real-world problems in reasonable time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combined chemometrics-metabolomics approach [excitation–emission matrix (EEM) fluorescence spectroscopy, nuclear magnetic resonance (NMR) and high performance liquid chromatography–mass spectrometry (HPLC–MS)] was used to analyse the rhizodeposition of the tritrophic system: tomato, the plant-parasitic nematode Meloidogyne javanica and the nematode-egg parasitic fungus Pochonia chlamydosporia. Exudates from M. javanica roots were sampled at root penetration (early) and gall development (late). EMM indicated that late root exudates from M. javanica treatments contained more aromatic amino acid compounds than the rest (control, P. chlamydosporia or P. chlamydosporia and M. javanica). 1H NMR showed that organic acids (acetate, lactate, malate, succinate and formic acid) and one unassigned aromatic compound (peak no. 22) were the most relevant metabolites in root exudates. Robust principal component analysis (PCA) grouped early exudates for nematode (PC1) or fungus presence (PC3). PCA found (PC1, 73.31 %) increased acetate and reduced lactate and an unassigned peak no. 22 characteristic of M. javanica root exudates resulting from nematode invasion and feeding. An increase of peak no. 22 (PC3, 4.82 %) characteristic of P. chlamydosporia exudates could be a plant “primer” defence. In late ones in PC3 (8.73 %) the presence of the nematode grouped the samples. HPLC–MS determined rhizosphere fingerprints of 16 (early) and 25 (late exudates) m/z signals, respectively. Late signals were exclusive from M. javanica exudates confirming EEM and 1H NMR results. A 235 m/z signal reduced in M. javanica root exudates (early and late) could be a repressed plant defense. This metabolomic approach and other rhizosphere -omics studies could help to improve plant growth and reduce nematode damage sustainably.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GlnK proteins belong to the PII superfamily of signal transduction proteins and are involved in the regulation of nitrogen metabolism. These proteins are normally encoded in an operon together with the structural gene for the ammonium transporter AmtB. Haloferax mediterranei possesses two genes encoding for GlnK, specifically, glnK1 and glnK2. The present study marks the first investigation of PII proteins in haloarchaea, and provides evidence for the direct interaction between glutamine synthetase and both GlnK1 and GlnK2. Complex formation between glutamine synthetase and the two GlnK proteins is demonstrated with pure recombinant protein samples using in vitro activity assays, gel filtration chromatography and western blotting. This protein–protein interaction increases glutamine synthetase activity in the presence of 2-oxoglutarate. Separate experiments that were carried out with GlnK1 and GlnK2 produced equivalent results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behavior of methanesulfonic acid on platinum single crystal electrode surfaces is investigated by cyclic voltammetry and infrared spectroscopy measurements. The results are compared with the voltammetric profiles of perchloric and trifluoromethanesulfonic acids. The differences are interpreted in terms of the effect of the anion on the structure of water. No adsorbed species are detected by infrared spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diurnal changes in corneal geometry, pachymetry, and intraocular pressure (IOP) in a healthy eye were recorded. The deformation response to an air puff was simulated using 3 levels of corneal stiffness. The response was dependent on IOP and pachymetry and not only on the biomechanical properties of the cornea. Similarly, the maximum variability due to the diurnal changes in pachymetry and IOP in the corneal displacement generated by the air puff was found to reach 5%. Therefore, diurnal changes in IOP and corneal thickness were able to induce some variability in the air puff–based corneal deformation response. This potential variability should be considered when the biomechanical properties of the cornea are analyzed with air-puff devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model Hamiltonians have been, and still are, a valuable tool for investigating the electronic structure of systems for which mean field theories work poorly. This review will concentrate on the application of Pariser–Parr–Pople (PPP) and Hubbard Hamiltonians to investigate some relevant properties of polycyclic aromatic hydrocarbons (PAH) and graphene. When presenting these two Hamiltonians we will resort to second quantisation which, although not the way chosen in its original proposal of the former, is much clearer. We will not attempt to be comprehensive, but rather our objective will be to try to provide the reader with information on what kinds of problems they will encounter and what tools they will need to solve them. One of the key issues concerning model Hamiltonians that will be treated in detail is the choice of model parameters. Although model Hamiltonians reduce the complexity of the original Hamiltonian, they cannot be solved in most cases exactly. So, we shall first consider the Hartree–Fock approximation, still the only tool for handling large systems, besides density functional theory (DFT) approaches. We proceed by discussing to what extent one may exactly solve model Hamiltonians and the Lanczos approach. We shall describe the configuration interaction (CI) method, a common technology in quantum chemistry but one rarely used to solve model Hamiltonians. In particular, we propose a variant of the Lanczos method, inspired by CI, that has the novelty of using as the seed of the Lanczos process a mean field (Hartree–Fock) determinant (the method will be named LCI). Two questions of interest related to model Hamiltonians will be discussed: (i) when including long-range interactions, how crucial is including in the Hamiltonian the electronic charge that compensates ion charges? (ii) Is it possible to reduce a Hamiltonian incorporating Coulomb interactions (PPP) to an 'effective' Hamiltonian including only on-site interactions (Hubbard)? The performance of CI will be checked on small molecules. The electronic structure of azulene and fused azulene will be used to illustrate several aspects of the method. As regards graphene, several questions will be considered: (i) paramagnetic versus antiferromagnetic solutions, (ii) forbidden gap versus dot size, (iii) graphene nano-ribbons, and (iv) optical properties.