3 resultados para Objective method

em Universidad de Alicante


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To assess the usefulness of microperimetry (MP) as an additional objective method for characterizing the fixation pattern in nystagmus. Design: Prospective study. Participants: Fifteen eyes of 8 subjects (age, 12–80 years) with nystagmus from the Lluís Alcanyís Foundation (University of Valencia, Spain) were included. Methods: All patients had a comprehensive ophthalmologic examination including a microperimetric examination (MAIA, CenterVue, Padova, Italy). The following microperimetric parameters were evaluated: average threshold (AT), macular integrity index (MI), fixating points within a circle of 1° (P1) and 2° of radius (P2), bivariate contour ellipse area (BCEA) considering 63% and 95% of fixating points, and horizontal and vertical axes of that ellipse. Results: In monocular conditions, 6 eyes showed a fixation classified as stable, 6 eyes showed a relatively unstable fixation, and 3 eyes showed an unstable fixation. Statistically significant differences were found between the horizontal and vertical components of movement (p = 0.001), as well as in their ranges (p < 0.001). Intereye comparison showed differences between eyes in some subjects, but only statistically significant differences were found in the fixation coordinates X and Y (p < 0.001). No significant intereye differences were found between microperimetric parameters. Between monocular and binocular conditions, statistically significant differences in the X and Y coordinates were found in all eyes (p < 0.02) except one. No significant differences were found between MP parameters for monocular or binocular conditions. Strong correlations of corrected distance visual acuity (CDVA) with AT (r = 0.812, p = 0.014), MI (r = –0.812, p = 0.014), P1 (r = 0.729, p = 0.002), horizontal diameter of BCEA (r = –0.700, p = 0.004), and X range (r = –0.722, p = 0.005) were found. Conclusions: MP seems to be a useful technology for the characterization of the fixation pattern in nystagmus, which seems to be related to the level of visual acuity achieved by the patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poster presented in the 11th Mediterranean Congress of Chemical Engineering, Barcelona, October 21-24, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feature selection is an important and active issue in clustering and classification problems. By choosing an adequate feature subset, a dataset dimensionality reduction is allowed, thus contributing to decreasing the classification computational complexity, and to improving the classifier performance by avoiding redundant or irrelevant features. Although feature selection can be formally defined as an optimisation problem with only one objective, that is, the classification accuracy obtained by using the selected feature subset, in recent years, some multi-objective approaches to this problem have been proposed. These either select features that not only improve the classification accuracy, but also the generalisation capability in case of supervised classifiers, or counterbalance the bias toward lower or higher numbers of features that present some methods used to validate the clustering/classification in case of unsupervised classifiers. The main contribution of this paper is a multi-objective approach for feature selection and its application to an unsupervised clustering procedure based on Growing Hierarchical Self-Organising Maps (GHSOMs) that includes a new method for unit labelling and efficient determination of the winning unit. In the network anomaly detection problem here considered, this multi-objective approach makes it possible not only to differentiate between normal and anomalous traffic but also among different anomalies. The efficiency of our proposals has been evaluated by using the well-known DARPA/NSL-KDD datasets that contain extracted features and labelled attacks from around 2 million connections. The selected feature sets computed in our experiments provide detection rates up to 99.8% with normal traffic and up to 99.6% with anomalous traffic, as well as accuracy values up to 99.12%.