3 resultados para Nuclear science abstracts

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of microprocessor-based systems is gaining importance in application domains where safety is a must. For this reason, there is a growing concern about the mitigation of SEU and SET effects. This paper presents a new hybrid technique aimed to protect both the data and the control-flow of embedded applications running on microprocessors. On one hand, the approach is based on software redundancy techniques for correcting errors produced in the data. On the other hand, control-flow errors can be detected by reusing the on-chip debug interface, existing in most modern microprocessors. Experimental results show an important increase in the system reliability even superior to two orders of magnitude, in terms of mitigation of both SEUs and SETs. Furthermore, the overheads incurred by our technique can be perfectly assumable in low-cost systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Software-based techniques offer several advantages to increase the reliability of processor-based systems at very low cost, but they cause performance degradation and an increase of the code size. To meet constraints in performance and memory, we propose SETA, a new control-flow software-only technique that uses assertions to detect errors affecting the program flow. SETA is an independent technique, but it was conceived to work together with previously proposed data-flow techniques that aim at reducing performance and memory overheads. Thus, SETA is combined with such data-flow techniques and submitted to a fault injection campaign. Simulation and neutron induced SEE tests show high fault coverage at performance and memory overheads inferior to the state-of-the-art.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unprecedented sensitivity and large field of view of SKA will be of paramount importance for pulsar science, and for many related research fields. In particular, beside the obvious discovery of many more pulsars (even those with very low luminosity), and the extremely accurate timing analysis of the current pulsar population, SKA will allow to use pulsars to measure or put strong constraints on gravitational waves, Galactic magnetism, planet masses, general relativity and nuclear physics.