2 resultados para N-Gram Mutual Information
em Universidad de Alicante
Resumo:
In this paper, we propose a novel filter for feature selection. Such filter relies on the estimation of the mutual information between features and classes. We bypass the estimation of the probability density function with the aid of the entropic-graphs approximation of Rényi entropy, and the subsequent approximation of the Shannon one. The complexity of such bypassing process does not depend on the number of dimensions but on the number of patterns/samples, and thus the curse of dimensionality is circumvented. We show that it is then possible to outperform a greedy algorithm based on the maximal relevance and minimal redundancy criterion. We successfully test our method both in the contexts of image classification and microarray data classification.
Resumo:
Los métodos para Extracción de Información basados en la Supervisión a Distancia se basan en usar tuplas correctas para adquirir menciones de esas tuplas, y así entrenar un sistema tradicional de extracción de información supervisado. En este artículo analizamos las fuentes de ruido en las menciones, y exploramos métodos sencillos para filtrar menciones ruidosas. Los resultados demuestran que combinando el filtrado de tuplas por frecuencia, la información mutua y la eliminación de menciones lejos de los centroides de sus respectivas etiquetas mejora los resultados de dos modelos de extracción de información significativamente.