4 resultados para Multivariate geostatistics
em Universidad de Alicante
Resumo:
Poster presented in the 24th European Symposium on Computer Aided Process Engineering (ESCAPE 24), Budapest, Hungary, June 15-18, 2014.
Resumo:
In this work, we analyze the effect of incorporating life cycle inventory (LCI) uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear programming (MILP) coupled with a two-step transformation scenario generation algorithm with the unique feature of providing scenarios where the LCI random variables are correlated and each one of them has the desired lognormal marginal distribution. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study of a petrochemical supply chain. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact, and moreover the correlation among environmental burdens provides more realistic scenarios for the decision making process.
Resumo:
A microwave-assisted extraction (MAE) procedure to isolate phenolic compounds from almond skin byproducts was optimized. A three-level, three-factor Box–Behnken design was used to evaluate the effect of almond skin weight, microwave power, and irradiation time on total phenolic content (TPC) and antioxidant activity (DPPH). Almond skin weight was the most important parameter in the studied responses. The best extraction was achieved using 4 g, 60 s, 100 W, and 60 mL of 70% (v/v) ethanol. TPC, antioxidant activity (DPPH, FRAP), and chemical composition (HPLC-DAD-ESI-MS/MS) were determined by using the optimized method from seven different almond cultivars. Successful discrimination was obtained for all cultivars by using multivariate linear discriminant analysis (LDA), suggesting the influence of cultivar type on polyphenol content and antioxidant activity. The results show the potential of almond skin as a natural source of phenolics and the effectiveness of MAE for the reutilization of these byproducts.
Resumo:
The elemental analysis of Spanish palm dates by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry is reported for the first time. To complete the information about the mineral composition of the samples, C, H, and N are determined by elemental analysis. Dates from Israel, Tunisia, Saudi Arabia, Algeria and Iran have also been analyzed. The elemental composition have been used in multivariate statistical analysis to discriminate the dates according to its geographical origin. A total of 23 elements (As, Ba, C, Ca, Cd, Co, Cr, Cu, Fe, H, In, K, Li, Mg, Mn, N, Na, Ni, Pb, Se, Sr, V, and Zn) at concentrations from major to ultra-trace levels have been determined in 13 date samples (flesh and seeds). A careful inspection of the results indicate that Spanish samples show higher concentrations of Cd, Co, Cr, and Ni than the remaining ones. Multivariate statistical analysis of the obtained results, both in flesh and seed, indicate that the proposed approach can be successfully applied to discriminate the Spanish date samples from the rest of the samples tested.