7 resultados para Multicommutation flow systems
em Universidad de Alicante
Resumo:
The modeling of complex dynamic systems depends on the solution of a differential equations system. Some problems appear because we do not know the mathematical expressions of the said equations. Enough numerical data of the system variables are known. The authors, think that it is very important to establish a code between the different languages to let them codify and decodify information. Coding permits us to reduce the study of some objects to others. Mathematical expressions are used to model certain variables of the system are complex, so it is convenient to define an alphabet code determining the correspondence between these equations and words in the alphabet. In this paper the authors begin with the introduction to the coding and decoding of complex structural systems modeling.
Resumo:
In an open system, each disequilibrium causes a force. Each force causes a flow process, these being represented by a flow variable formally written as an equation called flow equation, and if each flow tends to equilibrate the system, these equations mathematically represent the tendency to that equilibrium. In this paper, the authors, based on the concepts of forces and conjugated fluxes and dissipation function developed by Onsager and Prigogine, they expose the following hypothesis: Is replaced in Prigogine’s Theorem the flow by its equation or by a flow orbital considering conjugate force as a gradient. This allows to obtain a dissipation function for each flow equation and a function of orbital dissipation.
Resumo:
The use of microprocessor-based systems is gaining importance in application domains where safety is a must. For this reason, there is a growing concern about the mitigation of SEU and SET effects. This paper presents a new hybrid technique aimed to protect both the data and the control-flow of embedded applications running on microprocessors. On one hand, the approach is based on software redundancy techniques for correcting errors produced in the data. On the other hand, control-flow errors can be detected by reusing the on-chip debug interface, existing in most modern microprocessors. Experimental results show an important increase in the system reliability even superior to two orders of magnitude, in terms of mitigation of both SEUs and SETs. Furthermore, the overheads incurred by our technique can be perfectly assumable in low-cost systems.
Resumo:
In this paper, the authors extend and generalize the methodology based on the dynamics of systems with the use of differential equations as equations of state, allowing that first order transformed functions not only apply to the primitive or original variables, but also doing so to more complex expressions derived from them, and extending the rules that determine the generation of transformed superior to zero order (variable or primitive). Also, it is demonstrated that for all models of complex reality, there exists a complex model from the syntactic and semantic point of view. The theory is exemplified with a concrete model: MARIOLA model.
Resumo:
Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i) non-automatic and more time-consuming; ii) automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic). Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm). Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher.
Resumo:
This paper addresses the problem of predicting the critical parameters that characterize thermal runaway in a tubular reactor with wall cooling, introducing a new view of the n-th order kinetics reactions. The paper describes the trajectories of the system in the temperature-(concentration)n plane, and deduces the conditions for the thermal risk.
Resumo:
Ecological models written in a mathematical language L(M) or model language, with a given style or methodology can be considered as a text. It is possible to apply statistical linguistic laws and the experimental results demonstrate that the behaviour of a mathematical model is the same of any literary text of any natural language. A text has the following characteristics: (a) the variables, its transformed functions and parameters are the lexic units or LUN of ecological models; (b) the syllables are constituted by a LUN, or a chain of them, separated by operating or ordering LUNs; (c) the flow equations are words; and (d) the distribution of words (LUM and CLUN) according to their lengths is based on a Poisson distribution, the Chebanov's law. It is founded on Vakar's formula, that is calculated likewise the linguistic entropy for L(M). We will apply these ideas over practical examples using MARIOLA model. In this paper it will be studied the problem of the lengths of the simple lexic units composed lexic units and words of text models, expressing these lengths in number of the primitive symbols, and syllables. The use of these linguistic laws renders it possible to indicate the degree of information given by an ecological model.