12 resultados para Mobile robots control

em Universidad de Alicante


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a model of a control system for robot systems inspired by the functionality and organisation of human neuroregulatory system. Our model was specified using software agents within a formal framework and implemented through Web Services. This approach allows the implementation of the control logic of a robot system with relative ease, in an incremental way, using the addition of new control centres to the system as its behaviour is observed or needs to be detailed with greater precision, without the need to modify existing functionality. The tests performed verify that the proposed model has the general characteristics of biological systems together with the desirable features of software, such as robustness, flexibility, reuse and decoupling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, there is an increasing number of robotic applications that need to act in real three-dimensional (3D) scenarios. In this paper we present a new mobile robotics orientated 3D registration method that improves previous Iterative Closest Points based solutions both in speed and accuracy. As an initial step, we perform a low cost computational method to obtain descriptions for 3D scenes planar surfaces. Then, from these descriptions we apply a force system in order to compute accurately and efficiently a six degrees of freedom egomotion. We describe the basis of our approach and demonstrate its validity with several experiments using different kinds of 3D sensors and different 3D real environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Robotics is an emerging field with great activity. Robotics is a field that presents several problems because it depends on a large number of disciplines, technologies, devices and tasks. Its expansion from perfectly controlled industrial environments toward open and dynamic environment presents a many new challenges. New uses are, for example, household robots or professional robots. To facilitate the low cost, rapid development of robotic systems, reusability of code, its medium and long term maintainability and robustness are required novel approaches to provide generic models and software systems who develop paradigms capable of solving these problems. For this purpose, in this paper we propose a model based on multi-agent systems inspired by the human nervous system able to transfer the control characteristics of the biological system and able to take advantage of the best properties of distributed software systems. Specifically, we model the decentralized activity and hormonal variation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Humans and machines have shared the same physical space for many years. To share the same space, we want the robots to behave like human beings. This will facilitate their social integration, their interaction with humans and create an intelligent behavior. To achieve this goal, we need to understand how human behavior is generated, analyze tasks running our nerves and how they relate to them. Then and only then can we implement these mechanisms in robotic beings. In this study, we propose a model of competencies based on human neuroregulator system for analysis and decomposition of behavior into functional modules. Using this model allow separate and locate the tasks to be implemented in a robot that displays human-like behavior. As an example, we show the application of model to the autonomous movement behavior on unfamiliar environments and its implementation in various simulated and real robots with different physical configurations and physical devices of different nature. The main result of this study has been to build a model of competencies that is being used to build robotic systems capable of displaying behaviors similar to humans and consider the specific characteristics of robots.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a new dynamic visual control system for redundant robots with chaos compensation. In order to implement the visual servoing system, a new architecture is proposed that improves the system maintainability and traceability. Furthermore, high performance is obtained as a result of parallel execution of the different tasks that compose the architecture. The control component of the architecture implements a new visual servoing technique for resolving the redundancy at the acceleration level in order to guarantee the correct motion of both end-effector and joints. The controller generates the required torques for the tracking of image trajectories. However, in order to guarantee the applicability of this technique, a repetitive path tracked by the robot-end must produce a periodic joint motion. A chaos controller is integrated in the visual servoing system and the correct performance is observed in low and high velocities. Furthermore, a method to adjust the chaos controller is proposed and validated using a real three-link robot.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the development of a low-cost mini-robot that is controlled by visual gestures. The prototype allows a person with disabilities to perform visual inspections indoors and in domestic spaces. Such a device could be used as the operator's eyes obviating the need for him to move about. The robot is equipped with a motorised webcam that is also controlled by visual gestures. This camera is used to monitor tasks in the home using the mini-robot while the operator remains quiet and motionless. The prototype was evaluated through several experiments testing the ability to use the mini-robot’s kinematics and communication systems to make it follow certain paths. The mini-robot can be programmed with specific orders and can be tele-operated by means of 3D hand gestures to enable the operator to perform movements and monitor tasks from a distance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robotics is a field that presents a large number of problems because it depends on a large number of disciplines, devices, technologies and tasks. Its expansion from perfectly controlled industrial environments toward open and dynamic environment presents a many new challenges, such as robots household robots or professional robots. To facilitate the rapid development of robotic systems, low cost, reusability of code, its medium and long term maintainability and robustness are required novel approaches to provide generic models and software systems who develop paradigms capable of solving these problems. For this purpose, in this paper we propose a model based on multi-agent systems inspired by the human nervous system able to transfer the control characteristics of the biological system and able to take advantage of the best properties of distributed software systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtual Worlds Generator is a grammatical model that is proposed to define virtual worlds. It integrates the diversity of sensors and interaction devices, multimodality and a virtual simulation system. Its grammar allows the definition and abstraction in symbols strings of the scenes of the virtual world, independently of the hardware that is used to represent the world or to interact with it. A case study is presented to explain how to use the proposed model to formalize a robot navigation system with multimodal perception and a hybrid control scheme of the robot.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For many years, humans and machines have shared the same physical space. To facilitate their interaction with humans, their social integration and for more rational behavior has been sought that the robots demonstrate human-like behavior. For this it is necessary to understand how human behavior is generated, discuss what tasks are performed and how relate to themselves, for subsequent implementation in robots. In this paper, we propose a model of competencies based on human neuroregulator system for analysis and decomposition of behavior into functional modules. Using this model allow separate and locate the tasks to be implemented in a robot that displays human-like behavior. As an example, we show the application of model to the autonomous movement behavior on unfamiliar environments and its implementation in various simulated and real robots with different physical configurations and physical devices of different nature. The main result of this work has been to build a model of competencies that is being used to build robotic systems capable of displaying behaviors similar to humans and consider the specific characteristics of robots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este proyecto se pretende diseñar un sistema embebido capaz de realizar procesamiento de imágenes y guiado de un hexacóptero. El hexacóptero dispondrá a bordo de una cámara así como las baterías y todo el hardware necesario para realizar el procesamiento de la información visual obtenida e implementar el controlador necesario para permitir su guiado. OpenCV es una biblioteca de primitivas de procesado de imagen que permite crear algoritmos de Visión por Computador de última generación. OpenCV fue desarrollado originalmente por Intel en 1999 para mostrar la capacidad de procesamiento de los micros de Intel, por lo que la mayoría de la biblioteca está optimizada para correr en estos micros, incluyendo las extensiones MMX y SSE. http://en.wikipedia.org/wiki/OpenCV Actualmente es ampliamente utilizada tanto por la comunidad científica como por la industria, para desarrollar nuevos algoritmos para equipos de sobremesa y sobre todo para sistemas empotrados (robots móviles, cámaras inteligentes, sistemas de inspección, sistemas de vigilancia, etc..). Debido a su gran popularidad se han realizado compilaciones de la biblioteca para distintos sistemas operativos tradicionales (Windows, Linux, Mac), para dispositivos móviles (Android, iOS) y para sistemas embebidos basados en distintos tipos de procesadores (ARM principalmente). - iPhone port: http://www.eosgarden.com/en/opensource/opencv-ios/overview/ - Android port: http://opencv.willowgarage.com/wiki/AndroidExperimental Un ejemplo de plataforma embebida es la tarjeta Zedboard (http://www.zedboard.org/), que representa el estado del arte en dispositivos embebidos basados en la arquitectura Cortex de ARM. La tarjeta incluye un procesador Cortex-A9 dual core junto con una gran cantidad de periféricos y posibilidades de conexión a tarjetas de expansión de terceras partes, lo que permite desarrollar aplicaciones en muy distintos campos de la Visión por Computador.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual information is increasingly being used in a great number of applications in order to perform the guidance of joint structures. This paper proposes an image-based controller which allows the joint structure guidance when its number of degrees of freedom is greater than the required for the developed task. In this case, the controller solves the redundancy combining two different tasks: the primary task allows the correct guidance using image information, and the secondary task determines the most adequate joint structure posture solving the possible joint redundancy regarding the performed task in the image space. The method proposed to guide the joint structure also employs a smoothing Kalman filter not only to determine the moment when abrupt changes occur in the tracked trajectory, but also to estimate and compensate these changes using the proposed filter. Furthermore, a direct visual control approach is proposed which integrates the visual information provided by this smoothing Kalman filter. This last aspect permits the correct tracking when noisy measurements are obtained. All the contributions are integrated in an application which requires the tracking of the faces of Asperger children.