1 resultado para Min Chiang
em Universidad de Alicante
Resumo:
Given a bent function f (x) of n variables, its max-weight and min-weight functions are introduced as the Boolean functions f + (x) and f − (x) whose supports are the sets {a ∈ Fn2 | w( f ⊕la) = 2n−1+2 n 2 −1} and {a ∈ Fn2 | w( f ⊕la) = 2n−1−2 n 2 −1} respectively, where w( f ⊕ la) denotes the Hamming weight of the Boolean function f (x) ⊕ la(x) and la(x) is the linear function defined by a ∈ Fn2 . f + (x) and f − (x) are proved to be bent functions. Furthermore, combining the 4 minterms of 2 variables with the max-weight or min-weight functions of a 4-tuple ( f0(x), f1(x), f2(x), f3(x)) of bent functions of n variables such that f0(x) ⊕ f1(x) ⊕ f2(x) ⊕ f3(x) = 1, a bent function of n + 2 variables is obtained. A family of 4-tuples of bent functions satisfying the above condition is introduced, and finally, the number of bent functions we can construct using the method introduced in this paper are obtained. Also, our construction is compared with other constructions of bent functions.