5 resultados para Milan
em Universidad de Alicante
Resumo:
In this paper it is shown that a conjecture of Lapidus and van Frankenhuysen of 2003 on the existence of a vertical line such that the density of the complex dimensions of nonlattice fractal strings with M scaling ratios off this line vanishes in the limit as M→∞, fails on the class of nonlattice self-similar fractal strings.
Resumo:
Some endophytic fungal genera in Vitis vinifera, including Acremonium, have been reported as antagonists of Plasmopara viticola. Endophytic Acremonium isolates from an asymptomatic grapevine cultivar Inzolia from Italy were identified by morphological features and multigene phylogenies of ITS, 18S and 28S genes, and their intra-specific genomic diversity was analyzed by RAPD analysis. Culture filtrates (CFs) obtained from Acremonium isolates were tested in vitro for their inhibitory activity against the P. viticola sporangia germination. Among 94 isolates, 68 belonged to the Acremonium persicinum and 26 to the Acremonium sclerotigenum. RAPD analysis grouped the A. persicinum isolates into 15 clusters and defined 31 different strains. The A. sclerotigenum isolates, instead, were clustered into 22 groups and represented 25 strains. All A. persicinum CFs inhibited sporangia germination of P. viticola, while not all those of A. sclerotigenum had inhibitory effect. A different degree of inhibition was observed between strains of the same species, while some strains of different species showed identical inhibitory effect. No correlation was found between RAPD groups and inhibitory activity in both Acremonium species.
Resumo:
Given a convex optimization problem (P) in a locally convex topological vector space X with an arbitrary number of constraints, we consider three possible dual problems of (P), namely, the usual Lagrangian dual (D), the perturbational dual (Q), and the surrogate dual (Δ), the last one recently introduced in a previous paper of the authors (Goberna et al., J Convex Anal 21(4), 2014). As shown by simple examples, these dual problems may be all different. This paper provides conditions ensuring that inf(P)=max(D), inf(P)=max(Q), and inf(P)=max(Δ) (dual equality and existence of dual optimal solutions) in terms of the so-called closedness regarding to a set. Sufficient conditions guaranteeing min(P)=sup(Q) (dual equality and existence of primal optimal solutions) are also provided, for the nominal problems and also for their perturbational relatives. The particular cases of convex semi-infinite optimization problems (in which either the number of constraints or the dimension of X, but not both, is finite) and linear infinite optimization problems are analyzed. Finally, some applications to the feasibility of convex inequality systems are described.
Resumo:
Given a bent function f (x) of n variables, its max-weight and min-weight functions are introduced as the Boolean functions f + (x) and f − (x) whose supports are the sets {a ∈ Fn2 | w( f ⊕la) = 2n−1+2 n 2 −1} and {a ∈ Fn2 | w( f ⊕la) = 2n−1−2 n 2 −1} respectively, where w( f ⊕ la) denotes the Hamming weight of the Boolean function f (x) ⊕ la(x) and la(x) is the linear function defined by a ∈ Fn2 . f + (x) and f − (x) are proved to be bent functions. Furthermore, combining the 4 minterms of 2 variables with the max-weight or min-weight functions of a 4-tuple ( f0(x), f1(x), f2(x), f3(x)) of bent functions of n variables such that f0(x) ⊕ f1(x) ⊕ f2(x) ⊕ f3(x) = 1, a bent function of n + 2 variables is obtained. A family of 4-tuples of bent functions satisfying the above condition is introduced, and finally, the number of bent functions we can construct using the method introduced in this paper are obtained. Also, our construction is compared with other constructions of bent functions.
Resumo:
We prove that, given a topological space X, the following conditions are equivalent. (α) X is a Gruenhage space. (β) X has a countable cover by sets of small local diameter (property SLD) by F∩G sets. (γ) X has a separating σ-isolated family M⊂F∩G. (δ) X has a one-to-one continuous map into a metric space which has a σ-isolated base of F∩G sets. Besides, we provide an example which shows Fragmentability ⇏ property SLD ⇏ the space to be Gruenhage.