4 resultados para Markov chains hidden Markov models Viterbi algorithm Forward-Backward algorithm maximum likelihood
em Universidad de Alicante
Resumo:
This article uses data from the social survey Allbus 1998 to introduce a method of forecasting elections in a context of electoral volatility. The approach models the processes of change in electoral behaviour, exploring patterns in order to model the volatility expressed by voters. The forecast is based on the matrix of transition probabilities, following the logic of Markov chains. The power of the matrix, and the use of the mover-stayer model, is debated for alternative forecasts. As an example of high volatility, the model uses data from the German general election of 1998. The unification of two German states in 1990 caused the incorporation of around 15 million new voters from East Germany who had limited familiarity and no direct experience of the political culture in West Germany. Under these circumstances, voters were expected to show high volatility.
Resumo:
Several recent works deal with 3D data in mobile robotic problems, e.g., mapping. Data comes from any kind of sensor (time of flight, Kinect or 3D lasers) that provide a huge amount of unorganized 3D data. In this paper we detail an efficient approach to build complete 3D models using a soft computing method, the Growing Neural Gas (GNG). As neural models deal easily with noise, imprecision, uncertainty or partial data, GNG provides better results than other approaches. The GNG obtained is then applied to a sequence. We present a comprehensive study on GNG parameters to ensure the best result at the lowest time cost. From this GNG structure, we propose to calculate planar patches and thus obtaining a fast method to compute the movement performed by a mobile robot by means of a 3D models registration algorithm. Final results of 3D mapping are also shown.
Resumo:
Paper submitted to the 39th International Symposium on Robotics ISR 2008, Seoul, South Korea, October 15-17, 2008.
Resumo:
Los métodos de máxima verosimilitud (MMV) ofrecen un marco alternativo a la estadística frecuentista convencional, alejándose del uso del p-valor para el rechazo de una única hipótesis nula y optando por el uso de las verosimilitudes para evaluar el grado de apoyo en los datos a un conjunto de hipótesis alternativas (o modelos) de interés para el investigador. Estos métodos han sido ampliamente aplicados en ecología en el marco de los modelos de vecindad. Dichos modelos usan una aproximación espacialmente explícita para describir procesos demográficos de plantas o procesos ecosistémicos en función de los atributos de los individuos vecinos. Se trata por tanto de modelos fenomenológicos cuya principal utilidad radica en funcionar como herramientas de síntesis de los múltiples mecanismos por los que las especies pueden interactuar e influenciar su entorno, proporcionando una medida del efecto per cápita de individuos de distintas características (ej. tamaño, especie, rasgos fisiológicos) sobre los procesos de interés. La gran ventaja de aplicar los MMV en el marco de los modelos de vecindad es que permite ajustar y comparar múltiples modelos que usen distintos atributos de los vecinos y/o formas funcionales para seleccionar aquel con mayor soporte empírico. De esta manera, cada modelo funcionará como un “experimento virtual” para responder preguntas relacionadas con la magnitud y extensión espacial de los efectos de distintas especies coexistentes, y extraer conclusiones sobre posibles implicaciones para el funcionamiento de comunidades y ecosistemas. Este trabajo sintetiza las técnicas de implementación de los MMV y los modelos de vecindad en ecología terrestre, resumiendo su uso hasta la fecha y destacando nuevas líneas de aplicación.