3 resultados para MULTIPLICATIVE NOISES

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo de este estudio es analizar la influencia del esquema aditivo en el desarrollo del razonamiento proporcional en estudiantes de educación secundaria. 558 estudiantes de educación secundaria respondieron a un cuestionario de problemas proporcionales y no proporcionales. Los resultados indican (i) que la capacidad de los estudiantes en identificar las relaciones proporcionales en los problemas proporcionales no implica necesariamente que sean capaces de identificar correctamente las relaciones aditivas en los problemas no proporcionales y viceversa; y (ii) que el tipo de relación multiplicativa entre las cantidades (entera o no entera) influía en el nivel de éxito en la resolución de los problemas proporcionales y no proporcionales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo de este estudio es determinar perfiles de estudiantes y su variación a lo largo de la Educación Primaria y Secundaria cuando resuelven problemas proporcionales y no proporcionales. 755 estudiantes de Educación Primaria y Secundaria respondieron a un cuestionario con diferentes tipos de problemas proporcionales y no proporcionales. El análisis de las respuestas nos permitió identificar cinco perfiles que muestran la utilización de relaciones aditivas independientemente del tipo de problema por los estudiantes de Educación Primaria y la utilización de proporciones independientemente del tipo de problema por los estudiantes de Educación Secundaria. Estos resultados indican que el éxito en los problemas proporcionales no implica necesariamente que los estudiantes hayan sido capaces de construir el significado de la idea de razón.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este estudio se centra en examinar la evolución en los niveles de éxito en la resolución de problemas de estructura multiplicativa por estudiantes de Educación Primaria (desde 1º a 6º curso, alumnos de 6 a 12 años). Los resultados indican que, en función de las categorías, los problemas de producto de medida fueron los más difíciles en todos los cursos y los problemas de isomorfismos de medida los más fáciles, mientras que los de comparación multiplicativa se mantuvieron entre ambos. Por el contrario, la evolución de los niveles de éxito en función de la clase de problema, no fue uniforme a lo largo de la educación primaria para los problemas de isomorfismo de medida pero sí en las otras dos categorías.