3 resultados para Laguerre and Hermite functions of second kind
em Universidad de Alicante
Resumo:
This paper proposes a method for diagnosing the impacts of second-home tourism and illustrates it for a Mediterranean Spanish destination. This method proposes the application of network analysis software to the analysis of causal maps in order to create a causal network model based on stakeholder-identified impacts. The main innovation is the analysis of indirect relations in causal maps for the identification of the most influential nodes in the model. The results show that the most influential nodes are of a political nature, which contradicts previous diagnoses identifying technical planning as the ultimate cause of problems.
Resumo:
Dung roller beetles of the genus Canthon (Coleoptera: Scarabaeinae) emit an odorous secretion from a pair of pygidial glands. To investigate the chemical composition of these secretions, we used stir bar sorptive extraction (SBSE), coupled with gas chromatography–mass spectrometry (GC–MS) for analysis of extracts of pygidial gland secretions secreted by the dung roller beetles Canthon femoralis femoralis and Canthon cyanellus cyanellus. Chemical analyses of volatiles collected from pygidial gland secretions comprise a great diversity of the functional groups. Chemical profile comparisons showed high intra- and interspecific variability. The pygidial gland secretion of Canthon f. femoralis was dominated by sesquiterpene hydrocarbons, whereas the profile of Canthon c. cyanellus was dominated by carboxylic acids. The different pygidial secretions have a high diversity of chemical compounds suggesting a multifunctional nature involving some key functions in the biology. We discuss the biological potential of these compounds found in the pygidial glands of each species with respect to their ecological and behavioral relevance.
Resumo:
Given a bent function f (x) of n variables, its max-weight and min-weight functions are introduced as the Boolean functions f + (x) and f − (x) whose supports are the sets {a ∈ Fn2 | w( f ⊕la) = 2n−1+2 n 2 −1} and {a ∈ Fn2 | w( f ⊕la) = 2n−1−2 n 2 −1} respectively, where w( f ⊕ la) denotes the Hamming weight of the Boolean function f (x) ⊕ la(x) and la(x) is the linear function defined by a ∈ Fn2 . f + (x) and f − (x) are proved to be bent functions. Furthermore, combining the 4 minterms of 2 variables with the max-weight or min-weight functions of a 4-tuple ( f0(x), f1(x), f2(x), f3(x)) of bent functions of n variables such that f0(x) ⊕ f1(x) ⊕ f2(x) ⊕ f3(x) = 1, a bent function of n + 2 variables is obtained. A family of 4-tuples of bent functions satisfying the above condition is introduced, and finally, the number of bent functions we can construct using the method introduced in this paper are obtained. Also, our construction is compared with other constructions of bent functions.