3 resultados para L1-norm
em Universidad de Alicante
Resumo:
Una de las cuestiones más polémicas que ha recorrido la enseñanza de lenguas modernas a lo largo de todo el siglo XX ha sido, sin duda, el debate sobre el empleo de la primera lengua de los estudiantes en el aula de idiomas. A ese respecto, han sido muchos y muy variados los argumentos a favor y en contra. Nuestro artículo se propone revisar tanto las razones que se han argüido para rechazar la presencia de la L1 en la clase de lenguas extranjeras como las que se aducen para incluirla, con especial atención a las aportaciones más recientes de la Teoría sociocultural del aprendizaje de idiomas. No se trata de un tema meramente lingüístico, sino que entran en juego también factores de índole psicológica, social y cultural, que vinculan directamente este asunto con los fenómenos de multicompetencia y plurilingüismo.
Awareness of L1 and L2 word-formation mechanisms for the development of a more autonomous L2 learner
Resumo:
Unlike traditional approaches, new communicative trends disregard the role of word-formation mechanisms. They tend to focus on syntax and/or vocabulary without analyzing the mechanisms involved in the creation of lexical items. In this paper, based on the analysis of the use of prefixes by L2 learners in oral and written productions, as provided by the SULEC, we emphasize the advantages that word-formation awareness and knowledge may have for the learners in terms of production, creativity, understanding, autonomy, and proficiency. Through the teaching of word-formation learners may more easily decipher, decode and/or encode messages, create words they have never seen before, etc.
Resumo:
In t-norm based systems many-valued logic, valuations of propositions form a non-countable set: interval [0,1]. In addition, we are given a set E of truth values p, subject to certain conditions, the valuation v is v=V(p), V reciprocal application of E on [0,1]. The general propositional algebra of t-norm based many-valued logic is then constructed from seven axioms. It contains classical logic (not many-valued) as a special case. It is first applied to the case where E=[0,1] and V is the identity. The result is a t-norm based many-valued logic in which contradiction can have a nonzero degree of truth but cannot be true; for this reason, this logic is called quasi-paraconsistent.