9 resultados para Inovation models in nets
em Universidad de Alicante
Resumo:
Although deterministic models of the evolution of mass tourism coastal resorts predict an almost inevitable decline over time, theoretical frameworks of the evolution and restructuring policies of mature destinations should be revised to reflect the complex and dynamic way in which these destinations evolve and interact with the tourism market and global socio-economic environment. The present study examines Benidorm because its urban and tourism model and large-scale tourism supply and demand make it one of the most unique destinations on the Mediterranean coast. The investigation reveals the need to adopt theories and models that are not purely deterministic. The dialectic interplay between external factors and the internal factors inherent in this destination simultaneously reveals a complex and diverse stage of maturity and the ability of destinations to create their own future.
Resumo:
With advances in the synthesis and design of chemical processes there is an increasing need for more complex mathematical models with which to screen the alternatives that constitute accurate and reliable process models. Despite the wide availability of sophisticated tools for simulation, optimization and synthesis of chemical processes, the user is frequently interested in using the ‘best available model’. However, in practice, these models are usually little more than a black box with a rigid input–output structure. In this paper we propose to tackle all these models using generalized disjunctive programming to capture the numerical characteristics of each model (in equation form, modular, noisy, etc.) and to deal with each of them according to their individual characteristics. The result is a hybrid modular–equation based approach that allows synthesizing complex processes using different models in a robust and reliable way. The capabilities of the proposed approach are discussed with a case study: the design of a utility system power plant that has been decomposed into its constitutive elements, each treated differently numerically. And finally, numerical results and conclusions are presented.
Resumo:
Customizing shoe manufacturing is one of the great challenges in the footwear industry. It is a production model change where design adopts not only the main role, but also the main bottleneck. It is therefore necessary to accelerate this process by improving the accuracy of current methods. Rapid prototyping techniques are based on the reuse of manufactured footwear lasts so that they can be modified with CAD systems leading rapidly to new shoe models. In this work, we present a shoe last fast reconstruction method that fits current design and manufacturing processes. The method is based on the scanning of shoe last obtaining sections and establishing a fixed number of landmarks onto those sections to reconstruct the shoe last 3D surface. Automated landmark extraction is accomplished through the use of the self-organizing network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates up to 12 times the surface reconstruction and filtering processes used by the current shoe last design software. The proposed method offers higher accuracy compared with methods with similar efficiency as voxel grid.
Resumo:
This paper describes a study and analysis of surface normal-base descriptors for 3D object recognition. Specifically, we evaluate the behaviour of descriptors in the recognition process using virtual models of objects created from CAD software. Later, we test them in real scenes using synthetic objects created with a 3D printer from the virtual models. In both cases, the same virtual models are used on the matching process to find similarity. The difference between both experiments is in the type of views used in the tests. Our analysis evaluates three subjects: the effectiveness of 3D descriptors depending on the viewpoint of camera, the geometry complexity of the model and the runtime used to do the recognition process and the success rate to recognize a view of object among the models saved in the database.
Resumo:
Dual-phase-lagging (DPL) models constitute a family of non-Fourier models of heat conduction that allow for the presence of time lags in the heat flux and the temperature gradient. These lags may need to be considered when modeling microscale heat transfer, and thus DPL models have found application in the last years in a wide range of theoretical and technical heat transfer problems. Consequently, analytical solutions and methods for computing numerical approximations have been proposed for particular DPL models in different settings. In this work, a compact difference scheme for second order DPL models is developed, providing higher order precision than a previously proposed method. The scheme is shown to be unconditionally stable and convergent, and its accuracy is illustrated with numerical examples.
Resumo:
Background: Spain’s financial crisis has been characterized by an increase in unemployment. This increase could have produced an increase in deaths of women due to intimate partner-related femicides (IPF). This study aims to determine whether the increase in unemployment among both sexes in different regions in Spain is related to an increase in the rates of IPF during the current financial crisis period. Methods: An ecological longitudinal study was carried out in Spain’s 17 regions. Two study periods were defined: pre-crisis period (2005–2007) and crisis period (2008–2013). IPF rates adjusted by age and unemployment rates for men and women were calculated. We fitted multilevel linear regression models in which observations at level 1 were nested within regions according to a repeated measurements design. Results: Rates of unemployment have progressively increased in Spain, rising above 20 % from 2008 to 2013 in some regions. IPF rates decreased in some regions during crisis period with respect to pre-crisis period. The multilevel analysis does not support the existence of a significant relationship between the increase in unemployment in men and women and the decrease in IPF since 2008. Discussion: The increase in unemployment in men and women in Spain does not appear to have an effect on IPF. The results of the multilevel analysis discard the hypothesis that the increase in the rates of unemployment in women and men are related to an increase in IPF rates. Conclusions: The decline in IPF since 2008 might be interpreted as the result of exposure to other factors such as the lower frequency of divorces in recent years or the medium term effects of the integral protection measures of the law on gender violence that began in 2005.
Resumo:
The Tertiary detritic aquifer of Madrid (TDAM), with an average thickness of 1500 m and a heterogeneous, anisotropic structure, supplies water to Madrid, the most populated city of Spain (3.2 million inhabitants in the metropolitan area). Besides its complex structure, a previous work focused in the north-northwest of Madrid city showed that the aquifer behaves quasi elastically trough extraction/recovery cycles and ground uplifting during recovery periods compensates most of the ground subsidence measured during previous extraction periods (Ezquerro et al., 2014). Therefore, the relationship between ground deformation and groundwater level through time can be simulated using simple elastic models. In this work, we model the temporal evolution of the piezometric level in 19 wells of the TDAM in the period 1997–2010. Using InSAR and piezometric time series spanning the studied period, we first estimate the elastic storage coefficient (Ske) for every well. Both, the Ske of each well and the average Ske of all wells, are used to predict hydraulic heads at the different well locations during the study period and compared against the measured hydraulic heads, leading to very similar errors when using the Ske of each well and the average Ske of all wells: 14 and 16 % on average respectively. This result suggests that an average Ske can be used to estimate piezometric level variations in all the points where ground deformation has been measured by InSAR, thus allowing production of piezometric level maps for the different extraction/recovery cycles in the TDAM.
Resumo:
We have studied the radial dependence of the energy deposition of the secondary electron generated by swift proton beams incident with energies T = 50 keV–5 MeV on poly(methylmethacrylate) (PMMA). Two different approaches have been used to model the electronic excitation spectrum of PMMA through its energy loss function (ELF), namely the extended-Drude ELF and the Mermin ELF. The singly differential cross section and the total cross section for ionization, as well as the average energy of the generated secondary electrons, show sizeable differences at T ⩽ 0.1 MeV when evaluated with these two ELF models. In order to know the radial distribution around the proton track of the energy deposited by the cascade of secondary electrons, a simulation has been performed that follows the motion of the electrons through the target taking into account both the inelastic interactions (via electronic ionizations and excitations as well as electron-phonon and electron trapping by polaron creation) and the elastic interactions. The radial distribution of the energy deposited by the secondary electrons around the proton track shows notable differences between the simulations performed with the extended-Drude ELF or the Mermin ELF, being the former more spread out (and, therefore, less peaked) than the latter. The highest intensity and sharpness of the deposited energy distributions takes place for proton beams incident with T ~ 0.1–1 MeV. We have also studied the influence in the radial distribution of deposited energy of using a full energy distribution of secondary electrons generated by proton impact or using a single value (namely, the average value of the distribution); our results show that differences between both simulations become important for proton energies larger than ~0.1 MeV. The results presented in this work have potential applications in materials science, as well as hadron therapy (due to the use of PMMA as a tissue phantom) in order to properly consider the generation of electrons by proton beams and their subsequent transport and energy deposition through the target in nanometric scales.
Resumo:
The Surface Renewal Theory (SRT) is one of the most unfamiliar models in order to characterize fluid-fluid and fluid-fluid-solid reactions, which are of considerable industrial and academicals importance. In the present work, an approach to the resolution of the SRT model by numerical methods is presented, enabling the visualization of the influence of different variables which control the heterogeneous overall process. Its use in a classroom allowed the students to reach a great understanding of the process.