5 resultados para Indoor radon
em Universidad de Alicante
Resumo:
This paper focuses on the cave houses of Crevillente (Spain) as a traditional housing experience which takes advantage of local environmental conditions through simple architectural proposals, paying particular attention to the presence of radon gas inside these underground constructions. Our aim is twofold: first, to analyse the architectural conditions of the different excavated typologies found in the municipality and second, to relate them to the existing radon gas levels after checking internal concentration by means of E-PERM® long-term devices placed inside the cave houses in 2011. The measurements corresponding to the main typologies in normal use conditions show that the highest values are 881.9 Bq/m3 in the cave typology, 484.1 Bq/m3 in the cave + attached constructions typology and 373.4 Bq/m3 in the cave + house typology, with geometric mean values of 572.1, 114.0 and 75.5 Bq/m3, respectively. It can be inferred from these results that cave house levels sometimes exceed those included in the 90/143/Euratom European Commission Recommendation on the protection of the public against indoor exposure to radon. The reason why cave houses are more susceptible to radon accumulation in their spaces lies in their direct and permanent contact with the ground where they are located.
Resumo:
The main contribution to the radiological impact from natural radiation received by general population is due to the emission of radon (222Rn). The objective of this project is the study of radon gas as a radioactive element in our buildings (existing and future constructions) to avoid its influence in interior rooms. The proposed methodology reflects different aspects of natural radioactivity in buildings, their sources, their control criteria and regulatory framework; aspects related to the presence of radon in our constructions, entryways, measurement methodology for indoor environmental concentration are studied; other protection solutions and remediation measures in both existing buildings and new construction projects are analyzed. In conclusion, the paper presents previous evaluation tools, the analysis of existing concentration and the choice of the most appropriate mitigation / remediation measures depending on each case, through the establishment of different architectural proposals to plan actions against radon where necessary.
Resumo:
Las medidas del gas radiactivo radón en lugares de trabajo subterráneos del Campus de la Universidad de Alicante fueron realizadas mediante dispositivos E-PERM® de corto plazo durante el invierno de 2010 y el verano de 2011. Las concentraciones de radón obtenidas muestran valores máximos de 73,8 Bq/m3 en invierno y 84,0 Bq/m3 en verano, así como una media aritmética de 30,3 Bq/m3. Aunque no se abordan concentraciones medias anuales, todos los resultados se encuentran por debajo de los valores recogidos en la Recomendación 90/143/EURATOM de la Comisión Europea relativa a la protección de la población contra los peligros de una exposición al radón en el interior de edificios así como los establecidos por la Instrucción IS-33 del Consejo de Seguridad Nuclear en lugares de trabajo, contribuyendo a la evaluación de la distribución de radón a nivel nacional y prestando atención a los problemas que este gas puede ocasionar en espacios subterráneos.
Resumo:
Fluctuations of trace gas activity as a response to variations in weather and microclimate conditions were monitored over a year in a shallow volcanic cave (Painted Cave, Galdar, Canary Islands, Spain). 222Rn concentration was used due to its greater sensitivity to hygrothermal variations than CO2 concentration. Radon concentration in the cave increases as effective vapour condensation within the porous system of the rock surfaces inside the cave increases due to humidity levels of more than 70%. Condensed water content in pores was assessed and linked to a reduction in the direct passage of trace gases. Fluctuations in radon activity as a response to variations in weather and microclimate conditions were statistically identified by clustering entropy changes on the radon signal and parameterised to predict radon concentration anomalies. This raises important implications for other research fields, including the surveillance of shallow volcanic and seismic activity, preventive conservation of cultural heritage in indoor spaces, indoor air quality control and studies to improve understanding of the role of subterranean terrestrial ecosystems as reservoirs and/or temporary sources of trace gases.
Resumo:
In this article we describe a semantic localization dataset for indoor environments named ViDRILO. The dataset provides five sequences of frames acquired with a mobile robot in two similar office buildings under different lighting conditions. Each frame consists of a point cloud representation of the scene and a perspective image. The frames in the dataset are annotated with the semantic category of the scene, but also with the presence or absence of a list of predefined objects appearing in the scene. In addition to the frames and annotations, the dataset is distributed with a set of tools for its use in both place classification and object recognition tasks. The large number of labeled frames in conjunction with the annotation scheme make this dataset different from existing ones. The ViDRILO dataset is released for use as a benchmark for different problems such as multimodal place classification and object recognition, 3D reconstruction or point cloud data compression.