4 resultados para Illinois Wetland Monitoring and Assessment Program.

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nursing Education in Europe is regulated by law from 2005. Clinical learning comprises at least 50% of the total degree program in nursing. It is necessary rely on professionals nurses involved in the learning process and skills development assessment. The level of implication in learning processes of these professional nurses is very important to ensure good results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, the intensive use of Technology Information (TI) provide solutions to problems of the high population density, energy conservation and cities management. This produces a newest concept of the city, Smart City. But the inclusion of TI in the city brings associated new problems, specifically the generation of electromagnetic fields from the available and new technological infrastructures installed in the city that did not exist before. This new scenario produces a negative effect on a particular group of the society, as are the group of persons with electromagnetic hypersensitivity pathology. In this work we propose a system that would allow you to detect and prevent the continuous exposure to such electromagnetic fields, without the need to include more devices or infrastructure which would only worsen these effects. Through the use of the architecture itself and Smart City services, it is possible to infer the necessary knowledge to know the situation of the EMF radiation and thus allow users to avoid the areas of greatest conflict. This knowledge, not only allows us to get EMF current map of the city, but also allows you to generate predictions and detect future risk situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, faced with the constant rise of the Smart cities around the world, there is an exponential increase of the use and deployment of information technologies in the cities. The intensive use of Information Technology (IT) in these ecosystems facilitates and improves the quality of life of citizens, but in these digital communities coexist individuals whose health is affected developing or increasing diseases such as electromagnetic hypersensitivity. In this paper we present a monitoring, detection and prevention system to help this group, through which it is reported the rates of electromagnetic radiation in certain areas, based on the information that the own Smart City gives us. This work provides a perfect platform for the generation of predictive models for detection of future states of risk for humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the discovery of a new member of the magnetar class, SGR J1935+2154, and on its timing and spectral properties measured by an extensive observational campaign carried out between 2014 July and 2015 March with Chandra and XMM–Newton (11 pointings). We discovered the spin period of SGR J1935+2154 through the detection of coherent pulsations at a period of about 3.24 s. The magnetar is slowing down at a rate of P˙=1.43(1)×10−11 s s−1 and with a decreasing trend due to a negative P¨ of −3.5(7) × 10−19 s s−2. This implies a surface dipolar magnetic field strength of ∼2.2 × 1014 G, a characteristic age of about 3.6 kyr and a spin-down luminosity Lsd ∼1.7 × 1034 erg s−1. The source spectrum is well modelled by a blackbody with temperature of about 500 eV plus a power-law component with photon index of about 2. The source showed a moderate long-term variability, with a flux decay of about 25 per cent during the first four months since its discovery, and a re-brightening of the same amount during the second four months. The X-ray data were also used to study the source environment. In particular, we discovered a diffuse emission extending on spatial scales from about 1 arcsec up to at least 1 arcmin around SGR J1935+2154 both in Chandra and XMM–Newton data. This component is constant in flux (at least within uncertainties) and its spectrum is well modelled by a power-law spectrum steeper than that of the pulsar. Though a scattering halo origin seems to be more probable we cannot exclude that part, or all, of the diffuse emission is due to a pulsar wind nebula.