2 resultados para Hincmar, Archbishop of Reims, ca. 806-882.

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we describe the growth of NaCl crystals by evaporating droplets of aqueous solution while monitoring them with infrared thermography. Over the course of the evaporation experiments, variations in the recorded signal were observed and interpreted as being the result of evaporation and crystallisation. In particular, we observed sharp and transient decreases in the thermosignal during the later stages of high-concentration drop evaporation. The number of such events per experiment, referred to as “pop-cold events”, varied from 1 to over 100 and had durations from 1 to 15 s. These events are interpreted as a consequence from the top-supplied creeping (TSC) of the solution feeding the growth of efflorescence-like crystals. This phenomenon occurred when the solution was no longer macroscopically visible. In this case, efflorescence-like crystals with a spherulite shape grew around previously formed cubic crystals. Other crystal morphologies were also observed but were likely fed by mass diffusion or bottom-supplied creeping (BSC) and were not associated with “pop-cold events”; these morphologies included the cubic crystals at the centre, ring-shaped at the edge of droplets and fan-shaped crystals. After complete evaporation, an analysis of the numbers and sizes of the different types of crystals was performed using image processing. Clear differences in their sizes and distribution were observed in relation to the salt concentration. Infrared thermography permitted a level of quantification that previously was only possible using other techniques. As example, the intermittent efflorescence growth process was clearly observed and measured for the first time using infrared thermography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granite submitted to high temperatures may lead to the loss of aesthetic values even before structural damage is caused. Thirteen granitoids were exposed to target temperatures, 200 °C, 400 °C, 600 °C, 800 °C and 1000 °C. Damage characterisation, including roughness, colour and oxidation of chromogen elements by means of X-ray photoelectron spectroscopy (XPS) was assessed. Altered granitoids are more resistant to structural failure but redden rapidly. Black mica-rich granitoids turn into yellow with a maximum at 800 °C. Alkali feldspar-rich granitoids redden progressively due to iron oxidation. Roughness varies progressively in mica-rich granitoids, while in mica-poor granitoids, an increase in roughness precedes catastrophic failure.