13 resultados para HYDROGENATION CATALYSTS
em Universidad de Alicante
Resumo:
The selective hydrogenation of 2-methyl-3-butyn-2-ol (MBY) was performed in the presence of Lindlar catalyst, comparing conventional stirring with sonication at different frequencies of 40, 380 and 850 kHz. Under conventional stirring, the reaction rates were limited by intrinsic kinetics, while in the case of sonication, the reaction rates were 50–90% slower. However, the apparent reaction rates were found to be significantly frequency dependent with the highest rate observed at 40 kHz. The original and the recovered catalysts after the hydrogenation reaction were compared using bulk elemental analysis, powder X-ray diffraction and scanning and transmission electron microscopy coupled with energy-dispersive X-ray analysis. The studies showed that sonication led to the frequency-dependent fracturing of polycrystalline support particles with the highest impact caused by 40 kHz sonication, while monocrystals were undamaged. In contrast, the leaching of Pd/Pb particles did not depend on the frequency, which suggests that sonication removed only loosely-bound catalyst particles.
Resumo:
A CNF-monolith sample (carbon nanofibres grown on a ceramic monolith), and a granular carbon xerogel have been used as supports for hybrid catalysts where the active species is an Rh diamine complex. The advantages of these supports are their open porous structure and their morphology, which make catalyst handling easier and avoid difficult separation processes. The obtained catalysts are noticeably more active than the homogeneous Rh complex and are stable against leaching. At first use, partial reduction of the Rh complex takes place and nanometer-sized Rh particles develop, which increases the catalyst activity. Despite the open porous structure, mass transport limitations are present, especially in the case of the carbon xerogel based catalyst. Differences in internal mass transfer limitations are essentially due to the different diffusional path lengths.
Resumo:
Two organic–inorganic mixed phase supports were prepared, comprising an alumina filler and polymers of different chemical nature. Four low loaded Pd catalysts were prepared. Good activities and selectivities were obtained during the hydrogenations of styrene, 1-heptyne and 2,3-butanedione. The catalysts were found to have excellent mechanical properties and could be used in applications needing high attrition resistance and crushing strength. In this sense, processes for fine chemicals using slurry reactors or processes for commodities using long packed beds could advantageously use them.
Resumo:
A Rh phosphine complex, derived from the Wilkinson’s catalyst, has been immobilized by ion-exchange on the ammonium form of a Al-MCM-41 sample. Ammonium ions have been exchanged by cholamine ions, which act as an amine ligand, and then the Wilkinson’s catalyst has been immobilized by substitution of a phosphine ligand by the anchored amine. This is a novel immobilization procedure, as a ligand, instead of the whole complex, is tethered to the support by ion exchange. The obtained hybrid catalyst has been characterized by Elemental Analysis, DRIFTS and XPS. The quantitative exchange of ammonium by cholamine and coordination of Rh to amines has been observed. Most of the anchored Rh is considered to be coordinated to the ligand tethered to the support and a small proportion seems to be interacting with the protonated ligand or with the support surface. The catalyst has been tested in the hydrogenation of cyclohexene and in the hydroformylation of 1-octene. In the first case the catalyst is active and reusable, while a strong Rh leaching takes place in the second one.
Resumo:
The sulfur resistance of low-loaded monometallic Pt catalysts and bimetallic Pt-W catalysts during the partial selective hydrogenation of styrene, a model compound of Pygas streams, was studied. The effect of metal impregnation sequence on the activity and selectivity was also evaluated. Catalysts were characterized by ICP, TPR, XRD, and XPS techniques. Catalytic tests with sulfur-free and sulfur-doped feeds were performed. All catalysts showed high selectivities (>98%) to ethylbenzene. Activity differences between the catalysts were mainly attributed to electronic effects due to the presence of different electron-rich species of Pt0 and electron-deficient species of Ptδ+. Pt0 promotes the cleavage of H2 while Ptδ+ the adsorption of styrene. The catalyst successively impregnated with W and Pt (WPt/Al) was more active and sulfur resistant than the catalyst prepared with an inverse impregnation order (PtW/Al). The higher poison resistance of WPt/Al was attributed to both steric and electronic effects.
Resumo:
Palladium, platinum, and ruthenium supported on activated carbon were used as catalysts for the selective hydrogenation of 1-heptyne, a terminal alkyne. All catalysts were characterized by temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. TPR and XPS suggest that the metal in all catalysts is reduced after the pretreatment with H2 at 673 K. The TPR trace of the PdNRX catalyst shows that the support surface groups are greatly modified as a consequence of the use of HNO3 during the catalyst preparation. During the hydrogenation of 1-heptyne, both palladium catalysts were more active and selective than the platinum and ruthenium catalysts. The activity order of the catalysts is as follows: PdClRX > PdNRX > PtClRX ≫ RuClRX. This superior performance of PdClRX was attributed in part to the total occupancy of the d electronic levels of the Pd metal that is supposed to promote the rupture of the H2 bond during the hydrogenation reaction. The activity differences between PdClRX and PdNRX catalysts could be attributed to a better accessibility of the substrate to the active sites, as a consequence of steric and electronic effects of the superficial support groups. The order for the selectivity to 1-heptene is as follows: PdClRX = PdNRX > RuClRX > PtClRX, and it can be mainly attributed to thermodynamic effects.
Resumo:
Chiral rhodium hybrid nanocatalysts have been prepared by covalent anchorage of pyrrolidine-based diphosphine ligands onto functionalized CNTs. This work constitutes the first attempt at covalent anchoring of homogeneous chiral catalysts on CNTs. The catalysts, prepared with two different chiral phosphines, were characterized by ICP, XPS, N2 adsorption and TEM, and have been tested in the asymmetric hydrogenation of two different substrates: methyl 2-acetamidoacrylate and α-acetamidocinnamic acid. The hybrid nanocatalysts have shown to be active and enantioselective in the hydrogenation of α-acetamidocinnamic acid. A good recyclability of the catalysts with low leaching and without loss of activity and enantioselectivity was observed.
Resumo:
Pd nanoparticles have been synthesized over carbon nanotubes (CNT) and graphite oxide (GO) by reduction with ethylene glycol and by conventional impregnation method. The catalysts were tested on the chemoselective hydrogenation of p-chloronitrobenzene and the effect of the synthesis method and surface chemistry on their catalytic performance was evaluated. The catalysts were characterized by N2 adsorption/desorption isotherms at 77 K, TEM, powder X-ray diffraction, thermogravimetry, infrared and X-ray photoelectron spectroscopy and ICP-OES. It was observed that the synthesis of Pd nanoparticles employing ethylene glycol resulted in metallic palladium particles of smaller size compared to those prepared by the impregnation method and similar for both supports. The presence of oxygen groups on the support surface favored the activity and diminished the selectivity. It seems that ethylene glycol reacted with the surface groups of GO, this favoring the selectivity. The activity was higher over the CNT-based catalysts and both catalysts prepared by reduction in ethylene glycol were quite stable upon recycling.
Resumo:
We have studied the synthesis of palladium nanoparticles over carbon nanotubes (Pd/CNT) and graphene (Pd/G) and we have tested their catalytic performance in the liquid phase chemoselective hydrogenation of para-chloronitrobenzene at room temperature. The catalysts were characterized by N2 adsorption/desorption isotherms, TEM, X-ray diffraction, infrared and X-ray photoelectron spectroscopy and ICP-OES. The palladium particle size on Pd/G (3.4 nm) and Pd/CNT (2.8 nm) was similar though the deposition was higher on Pd/G. Pd/CNT was more active which can be ascribed to the different surface area and electronic properties of the Pd nanoparticles over CNT, while the selectivity was 100% to the corresponding haloaniline over both catalysts and they were quite stable upon recycling.
Resumo:
An active hydrogenation Pd complex has been immobilised by impregnation on CNTs submitted to several treatments that lead to important differences in their surface chemistry and in the proportion of tubes with both ends open. Most of the hybrid catalysts are more active than the complex in homogeneous phase, but the support properties have an important impact in the catalytic activity. In general, the more developed the surface chemistry, the lower the activity. However, when CNTs are open at both ends, the Pd complex can enter the tubular cavity and an important enhancement of the catalytic activity due to a confinement effect is observed.
Resumo:
Low-cost tungsten monometallic catalysts containing variable amounts of metal (4.5, 7.1 and 8.5%W) were prepared by impregnating alumina with ammonium metatungstate as an inexpensive precursor. The catalysts were characterized using ICP, XPS, XRD, TPR and hydrogen chemisorption. These techniques revealed mainly WO3-Al2O3 (W6+) species on the surface. The effects of the content of W nanoparticles and reaction temperature on activity and selectivity for the partial hydrogenation of 3-hexyne, a non-terminal alkyne, were assessed under moderate conditions of temperature and pressure. The monometallic catalysts prepared were found to be active and stereoselective for the production of (Z )-3-hexene, had the following order: 7.1WN/A > 8.5 WN/A ≥ 4.5 WN/A. Additionally, the performance of the synthesized xWN/A catalysts exhibited high sensitivity to temperature variation. In all cases, the maximum 3-hexyne total conversion and selectivity was achieved at 323 K. The performance of the catalysts was considered to be a consequence of two phenomena: a) the electronic effects, related to the high charge of W (+6), causing an intensive dipole moment in the hydrogen molecule (van der Waals forces) and leading to heterolytic bond rupture; the H+ and H- species generated approach a 3-hexyne adsorbate molecule and cause heterolytic rupture of the C≡C bond into C- = C+; and b) steric effects related to the high concentration of WO3 on 8.5WN/A that block the Al2O3 support. Catalyst deactivation was detected, starting at about 50 min of reaction time. Electrodeficient W6+ species are responsible for the formation of green oil at the surface level, blocking pores and active sites of the catalyst, particularly at low reaction temperatures (293 and 303 K). The resulting best catalyst, 7.1WN/A, has low fabrication cost and high selectivity for (Z )-3-hexene (94%) at 323 K. This selectivity is comparable to that of the classical and more expensive industrial Lindlar catalyst (5 wt% Pd). The alumina supported tungsten catalysts are low-cost potential replacements for the Lindlar industrial catalyst. These catalysts could also be used for preparing bimetallic W-Pd catalysts for selective hydrogenation of terminal and non-terminal alkynes.
Resumo:
In the present work we have studied the effect of carbon supports with different graphitic character (carbon nanotubes, mesoporous graphite and activated carbon) on the catalytic performance of iridium nanoparticles on the liquid phase chemoselective hydrogenation of para-chloronitrobenzene at room temperature. The effect of the oxygen groups was also evaluated by oxidizing a portion of the carbon nanotubes. The Raman and XRD spectra showed that the mesoporous graphite displayed the strongest graphitic character. The characterization of the catalysts by HR-TEM, XPS and TPR-H2, showed that the catalysts had similar particle size and that the catalysts prepared over the previously oxidized support, Ir/CNTox, was not fully reduced. The activity and selectivity achieved with the catalyst Ir/CNT was the best among the samples and the presence of irdium oxide on Ir/CNTox diminished the yield to p-chloroaniline, being the worse catalyst. The reactivity of different isomers was also studied over Ir/CNT and it followed the order m > o > p.
Resumo:
In this review, we consider the main processes for the asymmetric transfer hydrogenation of ketones from 2008 up today. The most effective organometallic compounds (derived from Ru, Rh, Ir, Fe, Os, Ni, Co, and Re) and chiral ligands (derived from amino alcohols, diamines, sulfur- and phosphorus-containing compounds, as well as heterocyclic systems) will be shown paying special attention to functionalized substrates, tandem reactions, processes under non-conventional conditions, supported catalysts, dynamic kinetic resolutions, the use of water as a green solvent, theoretical and experimental studies on reaction mechanisms, enzymatic processes, and finally applications to the total synthesis of biologically active organic molecules.