5 resultados para HARDENING

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se ha estudiado la evolución de la microestructura, propiedades de durabilidad y resistencias mecánicas de morteros preparados con cementos comerciales, que contienen ceniza volante (entre un 21% y un 35%) y escoria de alto horno (entre un 66% y un 80%), expuestos a tres ambientes, un ambiente óptimo de laboratorio, y dos ambientes representativos del clima Atlántico y Mediterráneo respectivamente. Como referencia de comportamiento, también se ensayaron morteros de cemento Portland. La microestructura se caracterizó mediante porosimetría de intrusión de mercurio. En lo referente a la durabilidad, se estudiaron los coeficientes de absorción capilar y de migración de cloruros en estado no estacionario. También se determinó la resistencia a compresión de los morteros. Los ensayos se realizaron a 7, 28 y 90 días. La principal conclusión alcanzada es que los cementos con cenizas y escorias expuestos a condiciones ambientales representativas de los climas Atlántico y Mediterráneo, pueden desarrollar unas propiedades en servicio adecuadas al cabo de tres meses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today, the use of micropiles for different applications has become very common. In Spain, the cement grouts for micropiles are prepared using ordinary Portland cement and w:c ratio 0.5, although the micropiles standards do not restrict the cement type to use, provided that it reaches a certain compressive strength. In this study, the influence of using slag cement on the microstructure and durability related properties of cement grouts for micropiles have been studied until 90 hardening days, compared to an ordinary Portland cement. Finally, slag cement grouts showed good service properties, better than ordinary Portland cement ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Commercial off-the-shelf microprocessors are the core of low-cost embedded systems due to their programmability and cost-effectiveness. Recent advances in electronic technologies have allowed remarkable improvements in their performance. However, they have also made microprocessors more susceptible to transient faults induced by radiation. These non-destructive events (soft errors), may cause a microprocessor to produce a wrong computation result or lose control of a system with catastrophic consequences. Therefore, soft error mitigation has become a compulsory requirement for an increasing number of applications, which operate from the space to the ground level. In this context, this paper uses the concept of selective hardening, which is aimed to design reduced-overhead and flexible mitigation techniques. Following this concept, a novel flexible version of the software-based fault recovery technique known as SWIFT-R is proposed. Our approach makes possible to select different registers subsets from the microprocessor register file to be protected on software. Thus, design space is enriched with a wide spectrum of new partially protected versions, which offer more flexibility to designers. This permits to find the best trade-offs between performance, code size, and fault coverage. Three case studies have been developed to show the applicability and flexibility of the proposal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design of fault tolerant systems is gaining importance in large domains of embedded applications where design constrains are as important as reliability. New software techniques, based on selective application of redundancy, have shown remarkable fault coverage with reduced costs and overheads. However, the large number of different solutions provided by these techniques, and the costly process to assess their reliability, make the design space exploration a very difficult and time-consuming task. This paper proposes the integration of a multi-objective optimization tool with a software hardening environment to perform an automatic design space exploration in the search for the best trade-offs between reliability, cost, and performance. The first tool is commanded by a genetic algorithm which can simultaneously fulfill many design goals thanks to the use of the NSGA-II multi-objective algorithm. The second is a compiler-based infrastructure that automatically produces selective protected (hardened) versions of the software and generates accurate overhead reports and fault coverage estimations. The advantages of our proposal are illustrated by means of a complex and detailed case study involving a typical embedded application, the AES (Advanced Encryption Standard).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurement of concrete strain through non-invasive methods is of great importance in civil engineering and structural analysis. Traditional methods use laser speckle and high quality cameras that may result too expensive for many applications. Here we present a method for measuring concrete deformations with a standard reflex camera and image processing for tracking objects in the concretes surface. Two different approaches are presented here. In the first one, on-purpose objects are drawn on the surface, while on the second one we track small defects on the surface due to air bubbles in the hardening process. The method has been tested on a concrete sample under several loading/unloading cycles. A stop-motion sequence of the process has been captured and analyzed. Results have been successfully compared with the values given by a strain gauge. Accuracy of our methods in tracking objects is below 8 μm, in the order of more expensive commercial devices.