4 resultados para Generalized estimation equation
em Universidad de Alicante
Resumo:
Nowadays, there is an increasing number of robotic applications that need to act in real three-dimensional (3D) scenarios. In this paper we present a new mobile robotics orientated 3D registration method that improves previous Iterative Closest Points based solutions both in speed and accuracy. As an initial step, we perform a low cost computational method to obtain descriptions for 3D scenes planar surfaces. Then, from these descriptions we apply a force system in order to compute accurately and efficiently a six degrees of freedom egomotion. We describe the basis of our approach and demonstrate its validity with several experiments using different kinds of 3D sensors and different 3D real environments.
Resumo:
The optimization of chemical processes where the flowsheet topology is not kept fixed is a challenging discrete-continuous optimization problem. Usually, this task has been performed through equation based models. This approach presents several problems, as tedious and complicated component properties estimation or the handling of huge problems (with thousands of equations and variables). We propose a GDP approach as an alternative to the MINLP models coupled with a flowsheet program. The novelty of this approach relies on using a commercial modular process simulator where the superstructure is drawn directly on the graphical use interface of the simulator. This methodology takes advantage of modular process simulators (specially tailored numerical methods, reliability, and robustness) and the flexibility of the GDP formulation for the modeling and solution. The optimization tool proposed is successfully applied to the synthesis of a methanol plant where different alternatives are available for the streams, equipment and process conditions.
Resumo:
Purpose: To calculate theoretically the errors in the estimation of corneal power when using the keratometric index (nk) in eyes that underwent laser refractive surgery for the correction of myopia and to define and validate clinically an algorithm for minimizing such errors. Methods: Differences between corneal power estimation by using the classical nk and by using the Gaussian equation in eyes that underwent laser myopic refractive surgery were simulated and evaluated theoretically. Additionally, an adjusted keratometric index (nkadj) model dependent on r1c was developed for minimizing these differences. The model was validated clinically by retrospectively using the data from 32 myopic eyes [range, −1.00 to −6.00 diopters (D)] that had undergone laser in situ keratomileusis using a solid-state laser platform. The agreement between Gaussian (PGaussc) and adjusted keratometric (Pkadj) corneal powers in such eyes was evaluated. Results: It was found that overestimations of corneal power up to 3.5 D were possible for nk = 1.3375 according to our simulations. The nk value to avoid the keratometric error ranged between 1.2984 and 1.3297. The following nkadj models were obtained: nkadj= −0.0064286r1c + 1.37688 (Gullstrand eye model) and nkadj = −0.0063804r1c + 1.37806 (Le Grand). The mean difference between Pkadj and PGaussc was 0.00 D, with limits of agreement of −0.45 and +0.46 D. This difference correlated significantly with the posterior corneal radius (r = −0.94, P < 0.01). Conclusions: The use of a single nk for estimating the corneal power in eyes that underwent a laser myopic refractive surgery can lead to significant errors. These errors can be minimized by using a variable nk dependent on r1c.
Resumo:
Purpose: The aim of this study was to analyze theoretically the errors in the central corneal power calculation in eyes with keratoconus when a keratometric index (nk) is used and to clinically confirm the errors induced by this approach. Methods: Differences (DPc) between central corneal power estimation with the classical nk (Pk) and with the Gaussian equation (PGauss c ) in eyes with keratoconus were simulated and evaluated theoretically, considering the potential range of variation of the central radius of curvature of the anterior (r1c) and posterior (r2c) corneal surfaces. Further, these differences were also studied in a clinical sample including 44 keratoconic eyes (27 patients, age range: 14–73 years). The clinical agreement between Pk and PGauss c (true net power) obtained with a Scheimpflug photography–based topographer was evaluated in such eyes. Results: For nk = 1.3375, an overestimation was observed in most cases in the theoretical simulations, with DPc ranging from an underestimation of 20.1 diopters (D) (r1c = 7.9 mm and r2c = 8.2 mm) to an overestimation of 4.3 D (r1c = 4.7 mm and r2c = 3.1 mm). Clinically, Pk always overestimated the PGauss c given by the topography system in a range between 0.5 and 2.5 D (P , 0.01). The mean clinical DPc was 1.48 D, with limits of agreement of 0.71 and 2.25 D. A very strong statistically significant correlation was found between DPc and r2c (r = 20.93, P , 0.01). Conclusions: The use of a single value for nk for the calculation of corneal power is imprecise in keratoconus and can lead to significant clinical errors.