8 resultados para Fundamentals in linear algebra
em Universidad de Alicante
Resumo:
We discuss Fermi-edge singularity effects on the linear and nonlinear transient response of an electron gas in a doped semiconductor. We use a bosonization scheme to describe the low-energy excitations, which allows us to compute the time and temperature dependence of the response functions. Coherent control of the energy absorption at resonance is analyzed in the linear regime. It is shown that a phase shift appears in the coherent control oscillations, which is not present in the excitonic case. The nonlinear response is calculated analytically and used to predict that four wave-mixing experiments would present a Fermi-edge singularity when the exciting energy is varied. A new dephasing mechanism is predicted in doped samples that depends linearly on temperature and is produced by the low-energy bosonic excitations in the conduction band.
Resumo:
This paper is intended to provide conditions for the stability of the strong uniqueness of the optimal solution of a given linear semi-infinite optimization (LSIO) problem, in the sense of maintaining the strong uniqueness property under sufficiently small perturbations of all the data. We consider LSIO problems such that the family of gradients of all the constraints is unbounded, extending earlier results of Nürnberger for continuous LSIO problems, and of Helbig and Todorov for LSIO problems with bounded set of gradients. To do this we characterize the absolutely (affinely) stable problems, i.e., those LSIO problems whose feasible set (its affine hull, respectively) remains constant under sufficiently small perturbations.
Resumo:
Linear vector semi-infinite optimization deals with the simultaneous minimization of finitely many linear scalar functions subject to infinitely many linear constraints. This paper provides characterizations of the weakly efficient, efficient, properly efficient and strongly efficient points in terms of cones involving the data and Karush–Kuhn–Tucker conditions. The latter characterizations rely on different local and global constraint qualifications. The global constraint qualifications are illustrated on a collection of selected applications.
Resumo:
This paper studies stability properties of linear optimization problems with finitely many variables and an arbitrary number of constraints, when only left hand side coefficients can be perturbed. The coefficients of the constraints are assumed to be continuous functions with respect to an index which ranges on certain compact Hausdorff topological space, and these properties are preserved by the admissible perturbations. More in detail, the paper analyzes the continuity properties of the feasible set, the optimal set and the optimal value, as well as the preservation of desirable properties (boundedness, uniqueness) of the feasible and of the optimal sets, under sufficiently small perturbations.
Resumo:
The theory and methods of linear algebra are a useful alternative to those of convex geometry in the framework of Voronoi cells and diagrams, which constitute basic tools of computational geometry. As shown by Voigt and Weis in 2010, the Voronoi cells of a given set of sites T, which provide a tesselation of the space called Voronoi diagram when T is finite, are solution sets of linear inequality systems indexed by T. This paper exploits systematically this fact in order to obtain geometrical information on Voronoi cells from sets associated with T (convex and conical hulls, tangent cones and the characteristic cones of their linear representations). The particular cases of T being a curve, a closed convex set and a discrete set are analyzed in detail. We also include conclusions on Voronoi diagrams of arbitrary sets.
Resumo:
The so-called parallel multisplitting nonstationary iterative Model A was introduced by Bru, Elsner, and Neumann [Linear Algebra and its Applications 103:175-192 (1988)] for solving a nonsingular linear system Ax = b using a weak nonnegative multisplitting of the first type. In this paper new results are introduced when A is a monotone matrix using a weak nonnegative multisplitting of the second type and when A is a symmetric positive definite matrix using a P -regular multisplitting. Also, nonstationary alternating iterative methods are studied. Finally, combining Model A and alternating iterative methods, two new models of parallel multisplitting nonstationary iterations are introduced. When matrix A is monotone and the multisplittings are weak nonnegative of the first or of the second type, both models lead to convergent schemes. Also, when matrix A is symmetric positive definite and the multisplittings are P -regular, the schemes are also convergent.
Resumo:
Porous carbon and carbide materials with different structures were characterized using adsorption of nitrogen at 77.4 K before and after preadsorption of n-nonane. The selective blocking of the microporosity with n-nonane shows that ordered mesoporous silicon carbide material (OM-SiC) is almost exclusively mesoporous whereas the ordered mesoporous carbon CMK-3 contains a significant amount of micropores (25%). The insertion of micropores into OM-SiC using selective extraction of silicon by hot chlorine gas leads to the formation of ordered mesoporous carbide-derived carbon (OM-CDC) with a hierarchical pore structure and significantly higher micropore volume as compared to CMK-3, whereas a CDC material from a nonporous precursor is exclusively microporous. Volumes of narrow micropores, calculated by adsorption of carbon dioxide at 273 K, are in linear correlation with the volumes blocked by n-nonane. Argon adsorption measurements at 87.3 K allow for precise and reliable calculation of the pore size distribution of the materials using density functional theory (DFT) methods.
Resumo:
El objetivo del estudio es examinar qué tipo de aprehensiones cognitivas utilizan alumnos de Educación Primaria cuando resuelven problemas de generalización lineal. 81 alumnos de 5º y 6º curso resolvieron dos problemas de generalización lineal que diferían en la configuración de la sucesión de figuras dadas (mesas cuadradas o mesas en forma de trapecio). Los resultados indican que la configuración de la sucesión de figuras condiciona el tipo de aprehensión utilizada por los alumnos; en algunos casos tienen dificultades para cambiar de aprehensión.