2 resultados para Función visual

em Universidad de Alicante


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To examine a single-optic accommodating intraocular lens (IOL) visual performance by correlating IOL implanted eyes’ defocus curve with the intraocular aberrometric profile and the impact on the quality of life (QOL). Methods: Prospective consecutive case series study including a total of 25 eyes of 14 patients with ages ranging between 52 and 79 years old. All cases underwent cataract surgery with implantation of the single-optic accommodating IOL Crystalens HD (Bausch & Lomb). Distance and near visual acuity outcomes, intraocular aberrations, the defocus curve and QOL (NEI VFQ-25) were evaluated 3 months after surgery. Results: A significant improvement in distance visual acuity was found postoperatively (p = 0.02). Mean postoperative LogMAR uncorrected near visual acuity was 0.44 ± 0.23 (20/30). 60% of eyes had a postoperative addition between 0 and 1.5 diopters (D). The defocus curve showed an area of maximum visual acuity for the levels of defocus corresponding to distance and intermediate vision (−1 to +0.5 D). Postoperative intermediate visual acuity correlated significantly some QOL indices (r ≥ 0.51, p ≤ 0.03; difficulty in going down steps or seeing how people react to things that patient says) as well as with J0 component of manifest cylinder. Postoperative distance-corrected near visual acuity correlated significantly with age (r = 0.65, p < 0.01). Conclusions: This accommodating IOL seems to be able to restore the distance visual function as well as to provide an improvement in intermediate and near vision with a significant impact on patient's QOL, although limited by age and astigmatism. Future studies with larger sample sizes should confirm all these trends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta Tesis doctoral está orientada al estudio de estrategias y técnicas para el tratamiento de oclusiones. Las oclusiones suponen uno de los principales problemas en la percepción de una escena mediante visión por computador. Las condiciones de luz, los puntos de vista con los que se captura información de la escena, las posiciones y orientaciones de los objetos presentes en la escena son algunas de las causas que provocan que los objetos puedan quedar ocluidos parcialmente. Las investigaciones expuestas en esta Tesis se pueden agrupar en función de su objetivo en dos grupos: técnicas cuya finalidad es detectar la presencia de oclusiones y estrategias que permiten mejorar la percepción de un sistema de visión por computador, aun en el caso de la presencia de oclusiones. En primer lugar, se han desarrollado una serie de técnicas orientadas a la detección de oclusiones a partir de procesos de extracción de características y de segmentación color en imágenes. Estas técnicas permiten definir qué regiones en la imagen son susceptibles de considerarse zonas de oclusión, debido a una mala percepción de la escena, como consecuencia de observarla con un mal punto de vista. Como aplicación de estas técnicas se han desarrollado algoritmos basados en la segmentación color de la imagen y en la detección de discontinuidades mediante luz estructurada. Estos algoritmos se caracterizan por no incluir conocimiento previo de la escena. En segundo lugar, se han presentado una serie de estrategias que permiten corregir y/o modificar el punto de vista de la cámara con la que se observa la escena. De esta manera, las oclusiones identificadas, mediante los métodos expuestos en la primera parte de la Tesis, y que generalmente son debidas a una mala localización de la cámara pueden ser eliminadas o atenuadas cambiando el punto de vista con el que se produce la observación. En esta misma línea se presentan dos estrategias para mejorar la posición y orientación espacial de la cámara cuando ésta se emplea para la captura de imágenes en procesos de reconocimiento. La primera de ellas se basa en la retroproyección de características obtenidas de una imagen real, a partir de una posición cualquiera, en imágenes virtuales correspondientes a las posibles posiciones que puede adoptar la cámara. Este algoritmo lleva a cabo la evaluación de un mapa de distancias entre estas características buscando en todo momento, maximizar estas distancias para garantizar un mejor punto de vista. La ventaja radica en que en ningún caso se hace necesario mover la cámara para determinar una nueva posición que mejore la percepción de la escena. La segunda de estas estrategias, busca corregir la posición de la cámara buscando la ortogonalidad. En este caso, se ha partido de la hipótesis inicial de que la mayor superficie visible siempre se suele conseguir situando la cámara ortogonalmente al plano en el que se sitúa el objeto.