2 resultados para Formaldehyde-assisted isolation of regulatory elements
em Universidad de Alicante
Resumo:
This work presents a comparative study between the catalytic performance of the 2% CuO/ceria-zirconia powder catalyst and the same catalyst supported on silicon carbide DPF (Diesel Particulate Filter) towards NO oxidation reaction and soot combustion reaction. The ceria-zirconia catalyst was prepared by the co-precipitation method and 2 wt% copper was incorporated by the incipient wetness impregnation method. The catalyst was incorporated onto the ceramic support using a simple and organic solvent-free procedure by a simply dipping the DPF into an aqueous solution of the catalyst. The powder catalyst has been characterized using N2 adsorption at −196 °C, XRD and Raman Spectroscopy; whereas the catalytic coating morphology has been evaluated by SEM and the mechanical stability by an adherence test. Both catalyst configurations were tested for NO oxidation to NO2 and for soot combustion under NOx/O2. The results revealed that incorporation of the very active copper/ceria-zirconia catalyst onto SiC-DPF has been successfully achieved by a simple coating procedure. Furthermore, the catalytic coating has shown suitable mechanical, chemical and thermal stability. A satisfactory catalytic performance of the catalytic-coated filter was reached towards the NO oxidation reaction. Moreover, it was proved that the catalytic coating is stable and the corresponding coated DPF can be reused for several cycles of NO oxidation without a significant decrease in its activity. Finally, it was verified that the loose-contact mode is a good choice to simulate the catalytic performance of this active phase in a real diesel particulate filter.
Resumo:
A microwave-assisted extraction (MAE) procedure to isolate phenolic compounds from almond skin byproducts was optimized. A three-level, three-factor Box–Behnken design was used to evaluate the effect of almond skin weight, microwave power, and irradiation time on total phenolic content (TPC) and antioxidant activity (DPPH). Almond skin weight was the most important parameter in the studied responses. The best extraction was achieved using 4 g, 60 s, 100 W, and 60 mL of 70% (v/v) ethanol. TPC, antioxidant activity (DPPH, FRAP), and chemical composition (HPLC-DAD-ESI-MS/MS) were determined by using the optimized method from seven different almond cultivars. Successful discrimination was obtained for all cultivars by using multivariate linear discriminant analysis (LDA), suggesting the influence of cultivar type on polyphenol content and antioxidant activity. The results show the potential of almond skin as a natural source of phenolics and the effectiveness of MAE for the reutilization of these byproducts.