4 resultados para Extinction coefficient
em Universidad de Alicante
Resumo:
Using information from two recently published atlases of threatened invertebrate species in peninsular Spain, we examined the climatic, land use and geographic characteristics of the 100 km2 UTM cells with most likelihood of suffering extinctions (extinction cells), as well as the attributes of the species prone to population extinctions. Extinction cells have had significantly (1) lower precipitation values, (2) higher temperatures, (3) higher percentages of anthropic land uses or (4) higher rates of anthropization during the last 20 years than the remaining cells. Nevertheless, probable extinctions may occur under a wide range of climatic and anthropization change rates and these variables can only explain a low proportion (~5 %) of variability in the occurrence or number of extinction cells. Aquatic species seem to suffer higher local extinction rates than terrestrial species. Interestingly, many invertebrate species with approximately 25 or less occurrence cells are on a clear trajectory towards extinction. These results outline the difficulties and uncertainties in relating probable population extinctions with climatic and land use changes in the case of invertebrate data. However, they also suggest that a third of the considered Spanish threatened species could have lost some of their populations, and that current conservation efforts are insufficient to reverse this tendency.
Resumo:
Koninckinids are a suitable group to shed light on the biotic crisis suffered by brachiopod fauna in the Early Jurassic. Koninckinid fauna recorded in the late Pliensbachian–early Toarcian from the easternmost Subbetic basin is analyzed and identified as a precursor signal for one of the most conspicuous mass extinction events of the Phylum Brachiopoda, a multi-phased interval with episodes of changing environmental conditions, whose onset can be detected from the Elisa–Mirabile subzones up to the early Toarcian extinction boundary in the lowermost Serpentinum Zone (T-OAE). The koninckinid fauna had a previously well-established migration pattern from the intra-Tethyan to the NW-European basins but a first phase with a progressive warming episode in the Pliensbachian–Toarcian transition triggered a koninckinid fauna exodus from the eastern/central Tethys toward the westernmost Mediterranean margins. A second stage shows an adaptive response to more adverse conditions in the westernmost Tethyan margins and finally, an escape and extinction phase is detected in the Atlantic areas from the mid-Polymorphum Zone onwards up to their global extinction in the lowermost Serpentinum Zone. This migration pattern is independent of the paleogeographic bioprovinciality and is unrelated to a facies-controlled pattern. The anoxic/suboxic environmental conditions should only be considered as a minor factor of partial control since well-oxygenated habitats are noted in the intra-Tethyan basins and this factor is noticeable only in the second westward migratory stage (with dwarf taxa and oligotypical assemblages). The analysis of cold-seep proxies in the Subbetic deposits suggests a radiation that is independent of methane releases in the Subbetic basin.
Resumo:
Chlorides induce local corrosion in the steel reinforcements when reaching the bar surface. The measurement of the rate of ingress of these ions, is made by mathematically fitting the so called “error function equation” into the chloride concentration profile, obtaining so the diffusion coefficient and the chloride concentration at the concrete surface. However, the chloride profiles do not always follow Fick’s law by having the maximum concentration at the concrete surface, but often the profile shows a maximum concentration more in the interior, which indicates a different composition and performance of the most external concrete layer with respect to the internal zones. The paper presents a procedure prepared during the time of the RILEM TC 178-TMC: “Testing and modeling chloride penetration in concrete”, which suggests neglecting the external layer where the chloride concentration increases and using the maximum as an “apparent” surface concentration, called C max and to fit the error function equation into the decreasing concentration profile towards the interior. The prediction of evolution should be made also from the maximum.
Resumo:
In the cs.index.zip file we provide an R script which let us plot the conditioned Gini (or skewness) coefficient used in the working paper entitled "On conditional skewness with applications in environmental data" submitted to Environmental and Ecological Statistics. On the other hand, the ReadMe.pdf explains how to use the cs.index.R script.