3 resultados para Extinction coefficient

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis demonstrates how the parameters of a slightly non-homogeneous medium can be derived approximately from the reflection coefficient.

Two types of media are investigated. The first is described by the one-dimensional wave equation, the second by the more complex Timoshenko beam equation. In both cases, the media are assumed to be infinite in extent, with the media parameters becoming homogeneous as the space variable approaches positive or negative infinity.

Much effort is placed in deriving properties of the reflection coefficient for both cases. The wave equation is considered primarily to introduce the techniques used to investigate the more complex Timoshenko equation. In both cases, an approximation is derived for one of the medium parameters involving the reflection coefficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural waters may be chemically studied as mixed electrolyte solutions. Some important equilibrium properties of natural waters are intimately related to the activity-concentration ratios (i.e., activity coefficients) of the ions in solution. An Ion Interaction Model, which is based on Pitzer's (1973) thermodynamic model, is proposed in this dissertation. The proposed model is capable of describing the activity coefficient of ions in mixed electrolyte solutions. The effects of temperature on the equilibrium conditions of natural waters and on the activity coefficients of the ions in solution, may be predicted by means of the Ion Interaction Model presented in this work.

The bicarbonate ion, HCO3-, is commonly found in natural waters. This anion plays an important role in the chemical and thermodynamic properties of water bodies. Such properties are usually directly related to the activity coefficient of HCO3- in solution. The Ion Interaction Model, as proposed in this dissertation, is used to describe indirectly measured activity coefficients of HCO3- in mixed electrolyte solutions.

Experimental pH measurements of MCl-MHCO3 and MCl-H2CO3 solutions at 25°C (where M = K+, Na+, NH4+, Ca2+ or Mg2+) are used in this dissertation to evaluate indirectly the MHCO3 virial coefficients. Such coefficients permit the prediction of the activity coefficient of HCO3- in mixed electrolyte solutions. The Ion Interaction Model is found to be an accurate method for predicting the activity coefficient of HCO3- within the experimental ionic strengths (0.2 to 3.0 m). The virial coefficients of KHCO3 and NaHCO3 and their respective temperature variations are obtained from similar experimental measurements at 10° and 40°C. The temperature effects on the NH4HCO3, Ca(HCO3)2, and Mg(HCO3)2 virial coefficients are estimated based on these results and the temperature variations of the virial coefficients of 40 other electrolytes.

Finally, the Ion Interaction Model is utilized to solve various problems of water chemistry where bicarbonate is present in solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hall coefficient and resistance in several specimens of an amorphous metallic alloy containing 80 at.% palladium and 20 at.% silicon have been investigated at temperatures between 4.2°K and room temperature. An ideal limiting behavior of these transport coefficients was analyzed on the basis of the nearly free electron model to yield a carrier density of 9 x 1022 cm.-3, or about 1.7 electrons per palladium atom, and a mean free path of about 9Å which is almost constant with temperature. The deviations of the individual specimens from this ideal behavior, which were small but noticeable in the relative resistivity and much greater in the Hall coefficient, can be explained by invoking disk-shaped crystalline regions with low resistivity and a positive Hall coefficient. A detailed calculation shows how a volume fraction of such crystalline material too small to be noticed in X-ray diffraction could have a significant effect on the resistivity and a much greater effect on the Hall coefficient.