37 resultados para Enantioselective addition

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

l-Prolinol-based ligands anchored to Merrifield or Wang-type resins have been shown to form efficient catalysts for the enantioselective addition of dialkylzinc reagents to N-(diphenylphosphinyl)imines. The enantioselectivity achieved with the polymeric catalyst (ee up to 88%) is slightly lower than the one obtained with the homogeneous ligand N-benzyl-l-prolinol, but the polymer-supported ligand presents the advantage of its recyclability: it can be recovered and used in up to six consecutive catalytic cycles with only a slight decrease in the enantiomeric excess. The phosphinamides obtained as addition products can be transformed into the corresponding enantiomerically enriched α-branched primary amines under mild acidic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enantiomerically pure carbamate-monoprotected trans-cyclohexane-1,2-diamines are used as chiral organocatalysts for the addition of aryl ketones and acetone to nitroalkenes to give enantioenriched β-substituted γ-nitroketones. The reaction was performed in the presence of 3,4-dimethoxybenzoic acid as an additive, in chloroform as the solvent at room temperature, achieving enantioselectivities up to 96%. Theoretical calculations are used to justify the observed sense of the stereoinduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Primary amine-guanidines derived from trans-cyclohexane-1,2-diamines are used as organocatalysts for the enantioselective conjugate addition of isobutyraldehyde to arylated and heteroarylated nitroalkenes. The reaction was performed in the presence of imidazole as the additive in aqueous DMF as the solvent at 0 °C. The corresponding Michael adducts bearing a new stereocenter were obtained in high yields and with enantioselectivities of up to 80%. Theoretical calculations are used to justify the observed sense of the stereoinduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Simple and commercially available chiral 1,2-diamines were used as organocatalysts for the enantioselective conjugate addition of aldehydes, including α,α-disubstituted, to maleimides. The reaction was carried out in the presence of hexanedioic acid as an additive in aqueous solvents at room temperature. By employing (1S,2S)- and (1R,2R)-cyclohexane-1,2-diamine as organocatalysts, the corresponding Michael adducts bearing new stereocenters were obtained in high or quantitative yields with enantioselectivities of up to 92%, whereas the use of (1S,2S)-1,2-diphenylethane-1,2-diamine gave a much lower ee. Theoretical calculations were used to justify the observed sense of the stereoinduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The monoguanylation of (1S,2S)- and (1R,2R)-cyclohexane-1,2-diamine affords chiral primary amine-guanidines that are used as chiral organocatalysts in the enantioselective Michael addition of aldehydes, particularly α,α-disubstituted aldehydes, to maleimides. The reaction is carried out in the presence of imidazole, as an additive, in aqueous N,N-dimethylformamide, as the solvent, and affords the corresponding enantioenriched succinimides in high or quantitative yields with enantioselectivities up to 96 % ee. Theoretical calculations (DFT and M06–2X) suggest a different hydrogen-bonding coordination pattern between the maleimide (C=O) and the catalyst (NH groups) is responsible for the enantioinduction switch that is observed when the reaction is carried out using primary amine-guanidines versus primary amine-thioureas as the organocatalysts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A wide variety of chiral succinimides have been prepared in high yields and enantioselectivities by asymmetric conjugate addition of 1,3-dicarbonyl compounds to maleimides under very mild reaction conditions using a bifunctional benzimidazole-derived organocatalyst. Computational and NMR studies support the hydrogen-bonding activation role of the catalyst and the origin of the stereoselectivity of the process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chiral primary amines containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a pyrimidin-2-yl unit are synthesized and used as general organocatalysts for the Michael reaction of α-branched aldehydes to maleimides. The reaction takes place with 10 mol% organocatalyst loading and hexanedioic acid as cocatalyst in aqueous N,N-dimethylformamide at 10 °C affording the corresponding succinimides in good yields and enantioselectivities. DFT calculations support the stereochemical results and the role played by the solvents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of proline as catalyst for the aldol process has given a boost to the development of organocatalysis as a research area. Since then, a plethora of organocatalysts of diverse structures have been developed for this and other organic transformations under different reaction conditions. The use of an organic molecule as catalyst to promote a reaction meets several principles of Green Chemistry. The implementation of solvent-free methodologies to carry out the aldol reaction was soon envisaged. These solvent-free processes can be performed using conventional magnetic stirring or applying ball milling techniques and are even compatible with the use of supported organocatalysts as promoters, which allows the recovery and reuse of the organocatalysts. In addition, other advantages such as the reduction of the required amount of nucleophile and the acceleration of the reaction are accomplished by using solvent-free conditions leading to a “greener” and more sustainable process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enantiomerically pure mono-N-Boc-protected trans-cyclohexa-1,2-diamines are used as organocatalysts for the enantioselective conjugate addition of α,α-disubstituted aldehydes to maleimides. Using a single enantiomer of the organocatalyst, both enantiomeric forms of the resulting Michael adducts bearing a new quaternary stereocenter are obtained in high yields, by only changing the reaction solvent from chloroform (up to 86% ee) to aqueous DMF (up to 84% ee).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enantioselective binap–silver catalyzed multicomponent 1,3-dipolar cycloaddition using ethyl glyoxylate, phenylalanine ethyl ester, and maleimides is described. The employment of basic silver carbonate allows the reaction to take place in the absence of an extra base giving high yields and ee. In addition, low-level calculations regarding the importance of the benzyl substituent at the α-position of the amino ester justify the expected absolute configuration of the final cycloadducts and the observed high enantiodiscrimination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BINAM-prolinamides are very efficient catalyst for the synthesis of non-protected and N-benzyl isatin derivatives by using an aldol reaction between ketones and isatins under solvent-free conditions. The results in terms of diastereo- and enantioselectivities are good, up to 99% de and 97% ee, and higher to those previously reported in the literature under similar reaction conditions. A high variation of the results is observed depending on the structure of the isatin and the ketone used in the process. While 90% of ee and 97% ee, respectively, is obtained by using (Ra)-BINAM-l-(bis)prolinamide as catalyst in the addition of cyclohexanone and α-methoxyacetone to free isatin, 90% ee is achieved for the reaction between N-benzyl isatin and acetone using N-tosyl BINAM-l-prolinamide as catalyst. This reaction is also carried out using a silica BINAM-l-prolinamide supported catalyst under solvent-free conditions, which can be reused up to five times giving similar results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple change in the polarity of the solvent allows both enantiomers of substituted succinimides to be obtained in the enantioselective conjugate addition reaction of aldehydes, mainly α,α-disubstituted, to maleimides catalysed by chiral carbamate-monoprotected trans-cyclohexane-1,2-diamines. Using a single enantiomer of the organocatalyst, both enantiomers of the resulting Michael adducts are obtained in high yields by simply changing the reaction solvent from aqueous DMF (up to 84 % ee) to chloroform (up to 86 % ee). Theoretical calculations are used to explain this uncommon reversal of the enantioselectivity; two transition state orientations of different polarities are differently favoured in polar or nonpolar solvents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bifunctional chiral primary amine 8 containing an (S,S)-trans-cyclohexane-1,2-diamine scaffold and a 2-benzimidazole unit is used as a general organocatalyst for the Michael addition of α,α-branched aldehydes to nitroalkenes and maleimides. The reactions take place, with 20 mol % of catalyst in dichloromethane at rt for nitroalkenes and with 15 mol % catalyst loading in toluene at 10 °C for maleimides, in good yields and enantioselectivities. DFT calculations demonstrate the bifunctional character of this organocatalyst activating the aldehyde by enamine formation and the Michael acceptor by double hydrogen bonding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of a GSK 2nd generation inhibitor of the hepatitis C virus, by enantioselective 1,3-dipolar cycloaddition between a leucine derived iminoester and tert-butyl acrylate, was studied. The comparison between silver(I) and gold(I) catalysts in this reaction was established by working with chiral phosphoramidites or with chiral BINAP. The best reaction conditions were used for the total synthesis of the hepatitis C virus inhibitor by a four step procedure affording this product in 99% ee and in 63% overall yield. The origin of the enantioselectivity of the chiral gold(I) catalyst was justified according to DFT calculations, the stabilizing coulombic interaction between the nitrogen atom of the thiazole moiety and one of the gold atoms being crucial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive experimental and computational studies have been carried out on the enantioselective titanium(IV)-catalyzed cyanobenzoylation of aldehydes using 1:n Binolam:Ti(OiPr)4 mixtures as precatalysts, with the purpose of identifying the key mechanistic aspects governing enantioselectivity. HCN and isopropyl benzoate were detected in the reacting mixtures. This, as well as the reaction’s response to the presence of an exogenous base, and the failure to react in the presence of Binol:Ti(OiPr)4 mixtures, led us to propose not a direct cyanobenzoylation but an indirect process involving enantioselective hydrocyanation followed by O-benzoylation. Computational work provided positive evidence for the intervention of both indirect and direct cyanobenzoylation routes, the former being faster. However, the standard Curtin–Hammett-based optimization search ended with unsatisfactory results. Experimental and computational DFT studies (B3LYP/6-31G*) led us to conclude that: (1) the overall cyanobenzoylation of aldehydes catalyzed by 1:n Binolam:Ti(OiPr)4 mixtures involves an enantioselective hydrocyanation followed by an stereochemically inert O-benzoylation; (2) the initial complexes prevailing in a 1:1 Binolam:Ti(OiPr)4 mixture are the solvated mononuclear monomer 5·2(iPrOH) and solvated dinuclear dimer 9·2(iPrOH), whereas 9·2(iPrOH) is the major component in a 1:2 or higher 1:n mixture; (3) since the slowest step is that of benzoylation of ligated iPrOH which yields the actual catalysts 5–9, the catalytic system fits into a non-Curtin–Hammett framework, the final products deriving from a kinetic quench of the competing routes; and (4) accordingly, catalysis by 1:1 Binolam:Ti(OiPr)4 mixtures should involve cyanobenzoylations promoted by mononuclear 5, contaminated with those promoted by some dinuclear open dimer 9, whereas cyanobenzoylations catalyzed by a 1:2 and higher 1:n mixtures should be the result of catalysis promoted by the large amounts of dinuclear open dimer 9.