4 resultados para Developing and Validation

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subsidence is a natural hazard that affects wide areas in the world causing important economic costs annually. This phenomenon has occurred in the metropolitan area of Murcia City (SE Spain) as a result of groundwater overexploitation. In this work aquifer system subsidence is investigated using an advanced differential SAR interferometry remote sensing technique (A-DInSAR) called Stable Point Network (SPN). The SPN derived displacement results, mainly the velocity displacement maps and the time series of the displacement, reveal that in the period 2004–2008 the rate of subsidence in Murcia metropolitan area doubled with respect to the previous period from 1995 to 2005. The acceleration of the deformation phenomenon is explained by the drought period started in 2006. The comparison of the temporal evolution of the displacements measured with the extensometers and the SPN technique shows an average absolute error of 3.9±3.8 mm. Finally, results from a finite element model developed to simulate the recorded time history subsidence from known water table height changes compares well with the SPN displacement time series estimations. This result demonstrates the potential of A-DInSAR techniques to validate subsidence prediction models as an alternative to using instrumental ground based techniques for validation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Iterative Closest Point algorithm (ICP) is commonly used in engineering applications to solve the rigid registration problem of partially overlapped point sets which are pre-aligned with a coarse estimate of their relative positions. This iterative algorithm is applied in many areas such as the medicine for volumetric reconstruction of tomography data, in robotics to reconstruct surfaces or scenes using range sensor information, in industrial systems for quality control of manufactured objects or even in biology to study the structure and folding of proteins. One of the algorithm’s main problems is its high computational complexity (quadratic in the number of points with the non-optimized original variant) in a context where high density point sets, acquired by high resolution scanners, are processed. Many variants have been proposed in the literature whose goal is the performance improvement either by reducing the number of points or the required iterations or even enhancing the complexity of the most expensive phase: the closest neighbor search. In spite of decreasing its complexity, some of the variants tend to have a negative impact on the final registration precision or the convergence domain thus limiting the possible application scenarios. The goal of this work is the improvement of the algorithm’s computational cost so that a wider range of computationally demanding problems from among the ones described before can be addressed. For that purpose, an experimental and mathematical convergence analysis and validation of point-to-point distance metrics has been performed taking into account those distances with lower computational cost than the Euclidean one, which is used as the de facto standard for the algorithm’s implementations in the literature. In that analysis, the functioning of the algorithm in diverse topological spaces, characterized by different metrics, has been studied to check the convergence, efficacy and cost of the method in order to determine the one which offers the best results. Given that the distance calculation represents a significant part of the whole set of computations performed by the algorithm, it is expected that any reduction of that operation affects significantly and positively the overall performance of the method. As a result, a performance improvement has been achieved by the application of those reduced cost metrics whose quality in terms of convergence and error has been analyzed and validated experimentally as comparable with respect to the Euclidean distance using a heterogeneous set of objects, scenarios and initial situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of digital competence remains an issue of interest for both the scientific community and the supranational political agenda. This study uses the Delphi method to validate the design of a questionnaire to determine the perceived importance of digital competence in higher education. The questionnaire was constructed from different framework documents in digital competence standards (NETS, ACLR, UNESCO). The triangulation of non-parametric techniques made it possible to consolidate the results obtained through the Delphi panel, the suitability of which was highlighted through the expert competence index (K). The resulting questionnaire emerges as a good tool for undertaking future national and international studies on digital competence in higher education.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ideologies face two critical problems in the reality, the problem of commitment and the problem of validation. Commitment and validation are two separate phenomena, in spite of the near universal myth that the human is committed because his beliefs are valid. Ideologies not only seem external and valid but also worth whatever discomforts believing entails. In this paper the authors develop a theory of social commitment and social validation using concepts of validation of neutrosophic logic.