7 resultados para Complex functions

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article, a new methodology is presented to obtain representation models for a priori relation z = u(x1, x2, . . . ,xn) (1), with a known an experimental dataset zi; x1i ; x2i ; x3i ; . . . ; xni i=1;2;...;p· In this methodology, a potential energy is initially defined over each possible model for the relationship (1), what allows the application of the Lagrangian mechanics to the derived system. The solution of the Euler–Lagrange in this system allows obtaining the optimal solution according to the minimal action principle. The defined Lagrangian, corresponds to a continuous medium, where a n-dimensional finite elements model has been applied, so it is possible to get a solution for the problem solving a compatible and determined linear symmetric equation system. The computational implementation of the methodology has resulted in an improvement in the process of get representation models obtained and published previously by the authors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In an open system, each disequilibrium causes a force. Each force causes a flow process, these being represented by a flow variable formally written as an equation called flow equation, and if each flow tends to equilibrate the system, these equations mathematically represent the tendency to that equilibrium. In this paper, the authors, based on the concepts of forces and conjugated fluxes and dissipation function developed by Onsager and Prigogine, they expose the following hypothesis: Is replaced in Prigogine’s Theorem the flow by its equation or by a flow orbital considering conjugate force as a gradient. This allows to obtain a dissipation function for each flow equation and a function of orbital dissipation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modeling of complex dynamic systems depends on the solution of a differential equations system. Some problems appear because we do not know the mathematical expressions of the said equations. Enough numerical data of the system variables are known. The authors, think that it is very important to establish a code between the different languages to let them codify and decodify information. Coding permits us to reduce the study of some objects to others. Mathematical expressions are used to model certain variables of the system are complex, so it is convenient to define an alphabet code determining the correspondence between these equations and words in the alphabet. In this paper the authors begin with the introduction to the coding and decoding of complex structural systems modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we give a new characterization of the closure of the set of the real parts of the zeros of a particular class of Dirichlet polynomials that is associated with the set of dimensions of fractality of certain fractal strings. We show, for some representative cases of nonlattice Dirichlet polynomials, that the real parts of their zeros are dense in their associated critical intervals, confirming the conjecture and the numerical experiments made by M. Lapidus and M. van Frankenhuysen in several papers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spin-projected spin polarized Møller–Plesset and spin polarized coupled clusters calculations have been made to estimate the cyclobutadiene automerization, the ethylene torsion barriers in their ground state, and the gap between the singlet and triplet states of ethylene. The results have been obtained optimizing the geometries at MP4 and/or CCSD levels, by an extensive Gaussian basis set. A comparative analysis with more complex calculations, up to MP5 and CCSDTQP, together with others from the literature, have also been made, showing the efficacy of using spin-polarized wave functions as a reference wave function for Møller–Plesset and coupled clusters calculations, in such problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the authors extend and generalize the methodology based on the dynamics of systems with the use of differential equations as equations of state, allowing that first order transformed functions not only apply to the primitive or original variables, but also doing so to more complex expressions derived from them, and extending the rules that determine the generation of transformed superior to zero order (variable or primitive). Also, it is demonstrated that for all models of complex reality, there exists a complex model from the syntactic and semantic point of view. The theory is exemplified with a concrete model: MARIOLA model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecological models written in a mathematical language L(M) or model language, with a given style or methodology can be considered as a text. It is possible to apply statistical linguistic laws and the experimental results demonstrate that the behaviour of a mathematical model is the same of any literary text of any natural language. A text has the following characteristics: (a) the variables, its transformed functions and parameters are the lexic units or LUN of ecological models; (b) the syllables are constituted by a LUN, or a chain of them, separated by operating or ordering LUNs; (c) the flow equations are words; and (d) the distribution of words (LUM and CLUN) according to their lengths is based on a Poisson distribution, the Chebanov's law. It is founded on Vakar's formula, that is calculated likewise the linguistic entropy for L(M). We will apply these ideas over practical examples using MARIOLA model. In this paper it will be studied the problem of the lengths of the simple lexic units composed lexic units and words of text models, expressing these lengths in number of the primitive symbols, and syllables. The use of these linguistic laws renders it possible to indicate the degree of information given by an ecological model.