4 resultados para Climatic Variability of the Mediterranean Paleo-circulation
em Universidad de Alicante
Resumo:
As the water vapor content in the atmosphere scales with temperature, a warmer world is expected to feature an intensification of the hydrological cycle. Work to date has mainly focused on mean precipitation changes, whose connection to climatic modes is elusive at a global scale. Here we show that continental precipitation annual amplitude, which represents the annual range between minimum and maximum (monthly) rainfall, covaries with a linear combination of the Atlantic Multidecadal Oscillation and low-frequency variations in the El Niño–Southern Oscillation on a decadal to multidecadal scale with a correlation coefficient of 0.92 (P<0.01). The teleconnection is a result of changes in moisture transport in key regions. Reported trends in the annual amplitude of global precipitation in recent decades need to be assessed in light of this substantial low-frequency variability, which could mask or enhance an anthropogenic signal in hydrological cycle changes.
Resumo:
The marine stratigraphic record of the Granada Basin (central Betic Cordillera, Spain) is composed of three Late Miocene genetic units deposited in different sea-level contexts (from base to top): Unit I (sea-level rise), Unit II (high sea-level), and Unit III (low sea-level). The latter mainly consists of evaporites precipitated in a shallow-basin setting. Biostratigraphic analyses based on planktonic foraminifera and calcareous nannoplankton indicate four late Tortonian bioevents (PF1-CN1, PF2, PF3, and PF4), which can be correlated with astronomically-dated events in other sections of the Mediterranean. PF1-CN1 (7.89 Ma) is characterized by the influx of the Globorotalia conomiozea group (including typical forms of Globorotalia mediterranea) and by the first common occurrence of Discoaster surculus; PF2 (7.84 Ma) is marked by the first common occurrence of Globorotalia suterae; PF3 (7.69 Ma) is typified by the influx of dextral Neogloboquadrina acostaensis; and PF4 (7.37 Ma) is defined by the influx of the Globorotalia menardii group II (dextral forms). The PF1 event occurred in the upper part of Unit I, whereas PF2 to PF4 events occurred successively within Unit II. The age of Unit III (evaporites) can only be estimated in its lower part based on the presence of dextral Globorotalia scitula, which, together with the absence of the first common occurrence of the G. conomiozea group (7.24 Ma), points to the latest Tortonian. Comparisons with data from the other Betic basins indicate that the evaporitic phase of the Granada Basin (7.37–7.24 Ma) is not synchronous with those from the Lorca Basin (7.80 Ma) and the Fortuna Basin (7.6 Ma). In the Bajo Segura Basin (easternmost Betic Cordillera), no evaporite deposition occurred during the late Tortonian. The evaporitic unit of the Granada Basin (central Betics) records the late Tortonian restriction of the Betic seaway (the marine connection between the Atlantic and Mediterranean). The diachrony in the restriction of the Betic seaway is related to differing tectonic movements in the central and eastern sectors of the Betic Cordillera.
Resumo:
The Bajo Segura Basin (eastern Betic Cordillera) is a Mediterranean marginal basin where the Messinian Erosional Surface (MES), formed during the Messinian Salinity Crisis sea-level fall, is well developed. Overlying this major discontinuity the lower Pliocene transgressive sediments record the reflooding of the Mediterranean and the return to an open marine environment, the continental shelf being rebuilt after the Messinian erosion. The stratigraphic and biostratigraphic study of six sections allows two transgressive-regressive sequences filling the MES to be distinguished, correlated with the previously distinguished Mediterranean offshore seismic units. Ten calcareous nannofossil bioevents have been identified. The lower sequence can be dated according to nannofossil biozones NN12 to NN14 and the upper sequence by NN15 to NN16. The boundary between both lower Pliocene sedimentary sequences occur after the first common occurrence (FCO) of Discoaster asymmetricus found in the uppermost sediments of the lower sequence and before the first occurrence (FO) of Discoaster tamalis in the lowermost part of the upper sequence. Thus this sequence boundary can be estimated at between 4.1 and 4.0Ma ago.
Resumo:
The assemblages of Early Jurassic brachiopods (Pliensbachian - Toarcian) from Sierra Espuña (Murcia Province, SE Spain) are described. This is the only area in the Internal Zones of the Betic Cordillera, corresponding to the margins of the Alborán Terrane, where Jurassic brachiopods are known to occur. In the tectonic Unit of Morrón de Totana (more southward located) assemblage MT1 of Late Pliensbachian age has been characterized. This assemblage has been subdivided into three successive sub-assemblages: MT1a (Algovianum Zone), MT1b (Emaciatum Zone, Solare Subzone) and MT1c (Emaciatum Zone, Elisa Subzone). Northward, in the Perona tectonic Unit two distinct assemblages, P1 (Latest Sinemurian - Early Pliensbachian) and P2 (Early Toarcian, Serpentinum Zone) have been recognized. Differences between the assemblages from the two tectonic units are evident after the paleobiogeographical analysis. In the Morrón de Totana Unit, taxa with Mediterranean affinities occur. MT1 assemblage is very similar to assemblages previously known in the Eastern Subbetic as well as in other areas of the Mediterranean Province. In the Perona Unit the Mediterranean affinity of the assemblages is not so evident. P1 Assemblage consists of widely distributed taxa, lacking in the most characteristic elements of the Mediterranean Province which, however, are present in neighbouring Betic areas. P2 Assemblage belongs to the Spanish Province that develops in Western Tethys after the Early Toarcian Mass Extinction Event. The occurrence in this assemblage of Prionorhynchia aff. msougari Rousselle, until now only found in North Africa, indicates a closer connection of the Perona Unit with the African paleomargin of the Tethys than with the South Iberian paleomargin. The paleobiogeographical data suggest a more southern and marginal (close to epicontinental areas) position of the Perona Unit than the Morrón de Totana Unit.