13 resultados para Building information modelling (BIM)
em Universidad de Alicante
Resumo:
Building Information Modelling (BIM) provides a shared source of information about a built asset, which creates a collaborative virtual environment for project teams. Literature suggests that to collaborate efficiently, the relationship between the project team is based on sympathy, obligation, trust and rapport. Communication increases in importance when working collaboratively but effective communication can only be achieved when the stakeholders are willing to act, react, listen and share information. Case study research and interviews with Architecture, Engineering and Construction (AEC) industry experts suggest that synchronous face-to-face communication is project teams’ preferred method, allowing teams to socialise and build rapport, accelerating the creation of trust between the stakeholders. However, virtual unified communication platforms are a close second-preferred option for communication between the teams. Effective methods for virtual communication in professional practice, such as virtual collaboration environments (CVE), that build trust and achieve similar spontaneous responses as face-to-face communication, are necessary to face the global challenges and can be achieved with the right people, processes and technology. This research paper investigates current industry methods for virtual communication within BIM projects and explores the suitability of avatar interaction in a collaborative virtual environment as an alternative to face-to-face communication to enhance collaboration between design teams’ professional practice on a project. Hence, this paper presents comparisons between the effectiveness of these communication methods within construction design teams with results of further experiments conducted to test recommendations for more efficient methods for virtual communication to add value in the workplace between design teams.
Resumo:
It has been widely documented that when Building Information Modelling (BIM) is used, there is a shift in effort to the design phase. Little investigation into the impact of this shift in effort has been done and how it impacts on costs. It can be difficult to justify the increased expenditure on BIM in a market that is heavily driven by costs. There are currently studies attempting to quantify the return on investment (ROI) for BIM for which these returns can be seen to balance out the shift in efforts and costs to the design phase. The studies however quantify the ROI based on the individual stakeholder’s investment without consideration for the impact that the use of BIM from their project partners may have on their own profitability. In this study, a questionnaire investigated opinions and experience of construction professionals, representing clients, consultants, designers and contractors, to determine fluctuations in costs by their magnitude and when they occur. These factors were examined more closely by interviewing senior members representing each of the stakeholder categories and comparing their experience in using BIM within environments where their project partners were also using BIM and when they were not. This determined the differences in how the use and the investment in BIM impacts on others and how costs are redistributed. This redistribution is not just through time but also between stakeholders and categories of costs. Some of these cost fluctuations and how the cost of BIM is currently financed are also highlighted in several case studies. The results show that the current distribution of costs set for traditional 2D delivery is hindering the potential success of BIM. There is also evidence that stakeholders who don’t use BIM may benefit financially from the BIM use of others and that collaborative BIM is significantly different to the use of ‘lonely’ BIM in terms of benefits and profitability.
Resumo:
PAS1192-2 (2013) outlines the “fundamental principles of Level 2 information modeling”, one of these principles is the use of what is commonly referred to as a Common Data Environment (CDE). A CDE could be described as an internet-enabled cloudhosting platform, accessible to all construction team members to access shared project information. For the construction sector to achieve increased productivity goals, the next generation of industry professionals will need to be educated in a way that provides them with an appreciation of Building Information Modelling (BIM) working methods, at all levels, including an understanding of how data in a CDE should be structured, managed, shared and published. This presents a challenge for educational institutions in terms of providing a CDE that addresses the requirements set out in PAS1192-2, and mirrors organisational and professional working practices without causing confusion due to over complexity. This paper presents the findings of a two-year study undertaken at Ulster University comparing the use of a leading industry CDE platform with one derived from the in-house Virtual Learning Environment (VLE), for the delivery of a student BIM project. The research methodology employed was a qualitative case study analysis, focusing on observations from the academics involved and feedback from students. The results of the study show advantages for both CDE platforms depending on the learning outcomes required.
Resumo:
The construction industry has long been considered as highly fragmented and non-collaborative industry. This fragmentation sprouted from complex and unstructured traditional coordination processes and information exchanges amongst all parties involved in a construction project. This nature coupled with risk and uncertainty has pushed clients and their supply chain to search for new ways of improving their business process to deliver better quality and high performing product. This research will closely investigate the need to implement a Digital Nervous System (DNS), analogous to a biological nervous system, on the flow and management of digital information across the project lifecycle. This will be through direct examination of the key processes and information produced in a construction project and how a DNS can provide a well-integrated flow of digital information throughout the project lifecycle. This research will also investigate how a DNS can create a tight digital feedback loop that enables the organisation to sense, react and adapt to changing project conditions. A Digital Nervous System is a digital infrastructure that provides a well-integrated flow of digital information to the right part of the organisation at the right time. It provides the organisation with the relevant and up-to-date information it needs, for critical project issues, to aid in near real-time decision-making. Previous literature review and survey questionnaires were used in this research to collect and analyse data about information management problems of the industry – e.g. disruption and discontinuity of digital information flow due to interoperability issues, disintegration/fragmentation of the adopted digital solutions and paper-based transactions. Results analysis revealed efficient and effective information management requires the creation and implementation of a DNS.
Resumo:
The construction industry is characterised by fragmentation and suffers from lack of collaboration, often adopting adversarial working practices to achieve deliverables. For the UK Government and construction industry, BIM is a game changer aiming to rectify this fragmentation and promote collaboration. However it has become clear that there is an essential need to have better controls and definitions of both data deliverables and data classification. Traditional methods and techniques for collating and inputting data have shown to be time consuming and provide little to improve or add value to the overall task of improving deliverables. Hence arose the need in the industry to develop a Digital Plan of Work (DPoW) toolkit that would aid the decision making process, providing the required control over the project workflows and data deliverables, and enabling better collaboration through transparency of need and delivery. The specification for the existing Digital Plan of Work (DPoW) was to be, an industry standard method of describing geometric, requirements and data deliveries at key stages of the project cycle, with the addition of a structured and standardised information classification system. However surveys and interviews conducted within this research indicate that the current DPoW resembles a digitised version of the pre-existing plans of work and does not push towards the data enriched decision-making abilities that advancements in technology now offer. A Digital Framework is not simply the digitisation of current or historic standard methods and procedures, it is a new intelligent driven digital system that uses new tools, processes, procedures and work flows to eradicate waste and increase efficiency. In addition to reporting on conducted surveys above, this research paper will present a theoretical investigation into usage of Intelligent Decision Support Systems within a digital plan of work framework. Furthermore this paper will present findings on the suitability to utilise advancements in intelligent decision-making system frameworks and Artificial Intelligence for a UK BIM Framework. This should form the foundations of decision-making for projects implemented at BIM level 2. The gap identified in this paper is that the current digital toolkit does not incorporate the intelligent characteristics available in other industries through advancements in technology and collation of vast amounts of data that a digital plan of work framework could have access to and begin to develop, learn and adapt for decision-making through the live interaction of project stakeholders.
Resumo:
Una de las exigencias técnicas más demandadas hoy en día dentro del ámbito edificatorio es el manejo de programas de diseño arquitectónico integrado, al convertirse en una formación indispensable frente al diseño tradicional. De este modo, la utilización de tecnologías BIM (Building Information Modeling) en el ámbito proyectual está suponiendo un impulso profesional cualitativo muy importante mediante la utilización de bases de datos específicas asociadas a dibujos convencionales desde distintas perspectivas y a todos los niveles. El objeto del presente estudio es la aplicación constructiva de esta herramienta en el ámbito docente de la Universidad de Alicante, suponiendo una oportunidad para implementar el estudio de nuevas tecnologías y conocer una interesante herramienta de trabajo implantada actualmente en muchas empresas de arquitectura y construcción. La metodología y los contenidos impartidos en el curso consideran una aplicación práctica de forma que los conocimientos adquiridos sean graduales y de aplicación sucesiva. En conclusión, el curso planteado responde a las crecientes necesidades profesionales en el ámbito constructivo con herramientas BIM y enriquece las habilidades de los estudiantes, mejorando su pericia en el ámbito del diseño y ampliando su capacidad de visión espacial; ambas cualidades indispensables en la práctica profesional arquitectónica.
Resumo:
Among Small and Medium Sized Enterprises (SMEs) in particular, the UK Government’s ambitions regarding BIM uptake and diffusion across the construction sector may be tempered by a realpolitik shaped in part by interactions between the industry, Higher Education (HE) and professional practice. That premise also has a global perspective. Building on the previous 2 papers, Architectural technology and the BIM Acronym 1 and 2, this third iteration is a synthesis of research and investigations carried out over a number of years directly related to the practical implementation of BIM and its impact upon BE SMEs. First challenges, risks and potential benefits for SMEs and micros in facing up to the necessity to engage with digital tools in a competitive and volatile marketplace are discussed including tailoring BIM to suit business models, and filtering out achievable BIM outcomes from generic and bespoke aspects of practice. Second the focus is on setting up and managing teams engaging with BIM scenarios, including the role of clients; addresses a range of paradigms including lonely BIM and collaborative working. The significance of taking a whole life view with BIM is investigated including embedding soft landings principles into project planning and realisation. Thirdly procedures for setting up and managing common data environments are identified and the value of achieving smooth information flow is addressed. The overall objective of this paper is to provide SMEs with a practical strategy to develop a toolkit to BIM implementation.
Resumo:
Closed miscibility gaps in ternary liquid mixtures, at constant temperature and pressure, are obtained if phase separations occur only in the ternary region, whilst all binary mixtures involved in the system are completely miscible. This type of behaviour, although not very frequent, has been observed for a certain number of systems. Nevertheless, we have found no information about the applicability of the common activity coefficient models, as NRTL and UNIQUAC, for these types of ternary systems. Moreover, any of the island type systems published in the most common liquid–liquid equilibrium data collections, are correlated with any model. In this paper, the applicability of the NRTL equation to model the LLE of island type systems is assessed using topological concepts related to the Gibbs stability test. A first attempt to correlate experimental LLE data for two island type ternary systems is also presented.
Resumo:
Paper submitted to the 39th International Symposium on Robotics ISR 2008, Seoul, South Korea, October 15-17, 2008.
Resumo:
Both the current economic situation in the construction sector and the continuous normative changes in the building area imply the use of new methodologies to enhance students’ competences in the degree of Building Engineer. The aim of this paper is to present, analyse and discuss the development of constructive workshops as a new teaching methodology used in the subject of Construction of Structures I at the University of Alicante to complement the constructive and technical knowledge acquired by our students and to enhance their communicative and representation skills essential for their professional practice in the future. The used methodology is based on the development of three-dimensional construction details (in groups of 3 or 4 students) to be shown in two A1-pannels exposed in the corridors of the Polytechnic School. Thus, students’ work approaches constructive problems in a global way by discussing simultaneously with teachers and other groups about the most suitable solution on each case. This contribution has multiperspective results and improves criticism of students in different areas, encouraging new learning strategies and active participation. What is more, on-line information and web applications have been used to prepare and organize this kind of workshops, allowing students to use new technologies as a complementary learning methodology. In conclusion, the use of these new workshops in the Degree of Building Engineer stimulates an interactive class versus a traditional lecture where the participative groups´ attitude and the development of oral presentations dissolve the traditional boundaries regarding public communication skills of the students in the Degree.
Resumo:
As BIM adoption continues, the goal of a totally collaborative model with multiple contributors is attainable. Many initiatives such as the 2016 UK government level 2 BIM deadline are putting pressure on the construction industry to speed up the changeover. Clients and collaborators have higher expectations of using digital 3D models to communicate design ideas and solve practical problems. Contractors and clients are benefitting from cost saving scheduling and clash detection offered by BIM. Effective collaboration on the project will also give speed and efficiency gains. Despite this, many businesses of varying sizes are still having problems. The cost of the software and the training provides an obvious barrier for micro-enterprises and could explain a delay in adoption. Many studies have looked at these problems faced by SME and micro-enterprises. Larger companies have different problems. The efforts made by government to encourage them are quite comprehensive, but is anything being done to help smaller sectors and keep the industry cohesive? This limited study examines several companies of varying size and varying project type: architectural design businesses, main contractor, structural engineer and building consultancy. The study examines the barriers to a truly collaborative BIM workflow facing different specialities on a larger project and a contrasting small/medium project. The findings will establish that different barriers for each sector are actually pushing further apart, thus potentially creating a BIM-only construction elite, leaving the small companies remaining on 2D based drawing.
Resumo:
Introducing teaching about healthy solutions in buildings and BIM has been a challenge for the University of Alicante. Teaching attached to very tighten study plans conditioned the types of methods that could be used in the past. The worldwide situation of crisis that especially reached Spain and the bursting of the housing bubble generated a lack of employment that reached universities where careers related to construction, Architecture and Architectural Technologist, suffered a huge reduction in the number of students enrolled. In the case of the University of Alicante, students’ enrolment for Architectural Technology reached an 80% reduction. The necessity of a reaction against this situation made the teachers be innovative and use the new Bologna adapted study plans to develop new teaching experiences introducing new concepts: people wellbeing in buildings and BIM. Working with healthy solutions in buildings provided new approaches for building design and construction as an alternative to sustainability. For many years sustainability was the concept that applied to housing gave buildings an added value and the possibility of having viability in a very complex scenario. But after lots of experiences, the approved methodologies for obtaining sustainable housing were ambiguous and at the end, investors, designers, constructors and purchasers cannot find real and validated criteria for obtaining an effective sustainable house. It was the moment to work with new ideas and concepts and start facing buildings from the users’ point of view. At the same time the development of new tools, BIM, has opened a wide range of opportunities, innovative and suggestive, that allows simulation and evaluation of many building factors. This paper describes the research in teaching developed by the University of Alicante to adapt the current study plans, introducing work with healthy solutions in buildings and the use of BIM, with the aim of attracting students by improving their future employability. Pilot experiences have been carried out in different subjects based on the work with projects and case studies under an international frame with the cooperation of different European partner universities. The use of BIM tools, introduced in 2014, solved the problems that appeared in some subjects, mainly building construction, and helped with the evaluation of some healthy concepts that presented difficulties until this moment as knowledge acquired by the students was hard to be evaluated. The introduction of BIM tools: Vasari, FormIt, Revit and Light Control among others, allowed the study of precise healthy concepts and provided the students a real understand of how these different parameters can condition a healthy architectural space. The analysis of the results showed a clear acceptance by the students and gave teachers the possibility of opening new research lines. At the same time, working with BIM tools to obtain healthy solutions in building has been a good option to improve students’ employability as building market in Spain is increasing the number of specialists in BIM with a wider knowledge.
Resumo:
Numerical modelling methodologies are important by their application to engineering and scientific problems, because there are processes where analytical mathematical expressions cannot be obtained to model them. When the only available information is a set of experimental values for the variables that determine the state of the system, the modelling problem is equivalent to determining the hyper-surface that best fits the data. This paper presents a methodology based on the Galerkin formulation of the finite elements method to obtain representations of relationships that are defined a priori, between a set of variables: y = z(x1, x2,...., xd). These representations are generated from the values of the variables in the experimental data. The approximation, piecewise, is an element of a Sobolev space and has derivatives defined in a general sense into this space. The using of this approach results in the need of inverting a linear system with a structure that allows a fast solver algorithm. The algorithm can be used in a variety of fields, being a multidisciplinary tool. The validity of the methodology is studied considering two real applications: a problem in hydrodynamics and a problem of engineering related to fluids, heat and transport in an energy generation plant. Also a test of the predictive capacity of the methodology is performed using a cross-validation method.