2 resultados para Basic adjoint difference operators
em Universidad de Alicante
Resumo:
We introduce the notion of Lipschitz compact (weakly compact, finite-rank, approximable) operators from a pointed metric space X into a Banach space E. We prove that every strongly Lipschitz p-nuclear operator is Lipschitz compact and every strongly Lipschitz p-integral operator is Lipschitz weakly compact. A theory of Lipschitz compact (weakly compact, finite-rank) operators which closely parallels the theory for linear operators is developed. In terms of the Lipschitz transpose map of a Lipschitz operator, we state Lipschitz versions of Schauder type theorems on the (weak) compactness of the adjoint of a (weakly) compact linear operator.
Resumo:
Mathematical morphology has been an area of intensive research over the last few years. Although many remarkable advances have been achieved throughout these years, there is still a great interest in accelerating morphological operations in order for them to be implemented in real-time systems. In this work, we present a new model for computing mathematical morphology operations, the so-called morphological trajectory model (MTM), in which a morphological filter will be divided into a sequence of basic operations. Then, a trajectory-based morphological operation (such as dilation, and erosion) is defined as the set of points resulting from the ordered application of the instant basic operations. The MTM approach allows working with different structuring elements, such as disks, and from the experiments, it can be extracted that our method is independent of the structuring element size and can be easily applied to industrial systems and high-resolution images.