6 resultados para Arrow’s theorem

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides new versions of the Farkas lemma characterizing those inequalities of the form f(x) ≥ 0 which are consequences of a composite convex inequality (S ◦ g)(x) ≤ 0 on a closed convex subset of a given locally convex topological vector space X, where f is a proper lower semicontinuous convex function defined on X, S is an extended sublinear function, and g is a vector-valued S-convex function. In parallel, associated versions of a stable Farkas lemma, considering arbitrary linear perturbations of f, are also given. These new versions of the Farkas lemma, and their corresponding stable forms, are established under the weakest constraint qualification conditions (the so-called closedness conditions), and they are actually equivalent to each other, as well as equivalent to an extended version of the so-called Hahn–Banach–Lagrange theorem, and its stable version, correspondingly. It is shown that any of them implies analytic and algebraic versions of the Hahn–Banach theorem and the Mazur–Orlicz theorem for extended sublinear functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This note provides an approximate version of the Hahn–Banach theorem for non-necessarily convex extended-real valued positively homogeneous functions of degree one. Given p : X → R∪{+∞} such a function defined on the real vector space X, and a linear function defined on a subspace V of X and dominated by p (i.e. (x) ≤ p(x) for all x ∈ V), we say that can approximately be p-extended to X, if is the pointwise limit of a net of linear functions on V, every one of which can be extended to a linear function defined on X and dominated by p. The main result of this note proves that can approximately be p-extended to X if and only if is dominated by p∗∗, the pointwise supremum over the family of all the linear functions on X which are dominated by p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For non-negative random variables with finite means we introduce an analogous of the equilibrium residual-lifetime distribution based on the quantile function. This allows us to construct new distributions with support (0, 1), and to obtain a new quantile-based version of the probabilistic generalization of Taylor's theorem. Similarly, for pairs of stochastically ordered random variables we come to a new quantile-based form of the probabilistic mean value theorem. The latter involves a distribution that generalizes the Lorenz curve. We investigate the special case of proportional quantile functions and apply the given results to various models based on classes of distributions and measures of risk theory. Motivated by some stochastic comparisons, we also introduce the “expected reversed proportional shortfall order”, and a new characterization of random lifetimes involving the reversed hazard rate function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this note is to formulate an envelope theorem for vector convex programs. This version corrects an earlier work, “The envelope theorem for multiobjective convex programming via contingent derivatives” by Jiménez Guerra et al. (2010) [3]. We first propose a necessary and sufficient condition allowing to restate the main result proved in the alluded paper. Second, we introduce a new Lagrange multiplier in order to obtain an envelope theorem avoiding the aforementioned error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to extend the classical envelope theorem from scalar to vector differential programming. The obtained result allows us to measure the quantitative behaviour of a certain set of optimal values (not necessarily a singleton) characterized to become minimum when the objective function is composed with a positive function, according to changes of any of the parameters which appear in the constraints. We show that the sensitivity of the program depends on a Lagrange multiplier and its sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unintended effects are well known to economists and sociologists and their consequences may be devastating. The main objective of this article is to formulate a mathematical theorem, based on Gödel's famous incompleteness theorem, in which it is shown, that from the moment deontical modalities (prohibition, obligation, permission, and faculty) are introduced into the social system, responses are allowed by the system that are not produced, however, prohibited responses or unintended effects may occur.