4 resultados para Application specific instruction-set processor
em Universidad de Alicante
Resumo:
Paper submitted to 10th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Sharjah, Emiratos Árabes, 2003.
Resumo:
Paper submitted to ACE 2013, 10th IFAC Symposium on Advances in Control Education, University of Sheffield, UK, August 28-30, 2013.
Resumo:
Hardware/Software partitioning (HSP) is a key task for embedded system co-design. The main goal of this task is to decide which components of an application are to be executed in a general purpose processor (software) and which ones, on a specific hardware, taking into account a set of restrictions expressed by metrics. In last years, several approaches have been proposed for solving the HSP problem, directed by metaheuristic algorithms. However, due to diversity of models and metrics used, the choice of the best suited algorithm is an open problem yet. This article presents the results of applying a fuzzy approach to the HSP problem. This approach is more flexible than many others due to the fact that it is possible to accept quite good solutions or to reject other ones which do not seem good. In this work we compare six metaheuristic algorithms: Random Search, Tabu Search, Simulated Annealing, Hill Climbing, Genetic Algorithm and Evolutionary Strategy. The presented model is aimed to simultaneously minimize the hardware area and the execution time. The obtained results show that Restart Hill Climbing is the best performing algorithm in most cases.
Resumo:
There is an increasing concern to reduce the cost and overheads during the development of reliable systems. Selective protection of most critical parts of the systems represents a viable solution to obtain a high level of reliability at a fraction of the cost. In particular to design a selective fault mitigation strategy for processor-based systems, it is mandatory to identify and prioritize the most vulnerable registers in the register file as best candidates to be protected (hardened). This paper presents an application-based metric to estimate the criticality of each register from the microprocessor register file in microprocessor-based systems. The proposed metric relies on the combination of three different criteria based on common features of executed applications. The applicability and accuracy of our proposal have been evaluated in a set of applications running in different microprocessors. Results show a significant improvement in accuracy compared to previous approaches and regardless of the underlying architecture.