7 resultados para Anisotropic magnetoresistance

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present ab initio calculations of the evolution of anisotropic magnetoresistance (AMR) in Ni nanocontacts from the ballistic to the tunnel regime. We find an extraordinary enhancement of AMR, compared to bulk, in two scenarios. In systems without localized states, such as chemically pure break junctions, large AMR only occurs if the orbital polarization of the current is large, regardless of the anisotropy of the density of states. In systems that display localized states close to the Fermi energy, such as a single electron transistor with ferromagnetic electrodes, large AMR is related to the variation of the Fermi energy as a function of the magnetization direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effect of magnetic anisotropy in a single electron transistor with ferromagnetic electrodes and a non-magnetic island. We identify the variation δμ of the chemical potential of the electrodes as a function of the magnetization orientation as a key quantity that permits to tune the electrical properties of the device. Different effects occur depending on the relative size of δμ and the charging energy. We provide preliminary quantitative estimates of δμ using a very simple toy model for the electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins, and excitons are treated quantum mechanically shows that a single polariton induces a sizable indirect anisotropic exchange interaction between spins. At sufficiently low temperatures strong ferromagnetic correlations show up without an appreciable increase in exciton population. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling is still significant at 1 K: spin-spin correlation around 3 for exciton occupation smaller than 0.3. We find that the interaction mediated by photon-polaritons is 10 times stronger than the one induced by a classical field for equal Rabi splitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By computing spin-polarized electronic transport across a finite zigzag graphene ribbon bridging two metallic graphene electrodes, we demonstrate, as a proof of principle, that devices featuring 100% magnetoresistance can be built entirely out of carbon. In the ground state a short zigzag ribbon is an antiferromagnetic insulator which, when connecting two metallic electrodes, acts as a tunnel barrier that suppresses the conductance. The application of a magnetic field makes the ribbon ferromagnetic and conductive, increasing dramatically the current between electrodes. We predict large magnetoresistance in this system at liquid nitrogen temperature and 10 T or at liquid helium temperature and 300 G.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relation between tunnel magnetoresistance (TMR) and spin polarization is explored for GaMnAs∕GaAlAs∕GaMnAs structures where the carriers experience strong spin–orbit interactions. TMR is calculated using the Landauer approach. The materials are described in the 6 band k⋅p model which includes spin–orbit interaction. Ferromagnetism is described in the virtual crystal mean field approximations. Our results indicate that TMR is a function of spin polarization and barrier thickness. As a result of the stong spin–orbit interactions, TMR also depends on the the angle between current flow direction and the electrode magnetization. These results compromise the validity of Julliere formula.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an intrinsic spin scattering mechanism in graphene originated by the interplay of atomic spin-orbit interaction and the local curvature induced by flexural distortions of the atomic lattice. Starting from a multiorbital tight-binding Hamiltonian with spin-orbit coupling considered nonperturbatively, we derive an effective Hamiltonian for the spin scattering of the Dirac electrons due to flexural distortions. We compute the spin lifetime due to both flexural phonons and ripples and we find values in the microsecond range at room temperature. Interestingly, this mechanism is anisotropic on two counts. First, the relaxation rate is different for off-plane and in-plane spin quantization axis. Second, the spin relaxation rate depends on the angle formed by the crystal momentum with the carbon-carbon bond. In addition, the spin lifetime is also valley dependent. The proposed mechanism sets an upper limit for spin lifetimes in graphene and will be relevant when samples of high quality can be fabricated free of extrinsic sources of spin relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multimetallic shape-controlled nanoparticles offer great opportunities to tune the activity, selectivity, and stability of electrocatalytic surface reactions. However, in many cases, our synthetic control over particle size, composition, and shape is limited requiring trial and error. Deeper atomic-scale insight in the particle formation process would enable more rational syntheses. Here we exemplify this using a family of trimetallic PtNiCo nanooctahedra obtained via a low-temperature, surfactant-free solvothermal synthesis. We analyze the competition between Ni and Co precursors under coreduction “one-step” conditions when the Ni reduction rates prevailed. To tune the Co reduction rate and final content, we develop a “two-step” route and track the evolution of the composition and morphology of the particles at the atomic scale. To achieve this, scanning transmission electron microscopy and energy dispersive X-ray elemental mapping techniques are used. We provide evidence of a heterogeneous element distribution caused by element-specific anisotropic growth and create octahedral nanoparticles with tailored atomic composition like Pt1.5M, PtM, and PtM1.5 (M = Ni + Co). These trimetallic electrocatalysts have been tested toward the oxygen reduction reaction (ORR), showing a greatly enhanced mass activity related to commercial Pt/C and less activity loss than binary PtNi and PtCo after 4000 potential cycles.