12 resultados para Aggregate (Building materials) -- Catalonia -- Garrotxa
em Universidad de Alicante
Resumo:
On a global level the population growth and increase of the middle class lead to a growing demand on material resources. The built environment has an enormous impact on this scarcity. In addition, a surplus of construction and demolition waste is a common problem. The construction industry claims to recycle 95% of this waste but this is in fact mainly downcycling. Towards the circular economy, the quality of reuse becomes of increasing importance. Buildings are material warehouses that can contribute to this high quality reuse. However, several aspects to achieve this are unknown and a need for more insight into the potential for high quality reuse of building materials exists. Therefore an instrument has been developed that determines the circularity of construction waste in order to maximise high quality reuse. The instrument is based on three principles: ‘product and material flows in the end of life phase’, ‘future value of secondary materials and products’ and ‘the success of repetition in a new life cycle’. These principles are further divided into a number of criteria to which values and weighting factors are assigned. A degree of circularity can then be determined as a percentage. A case study for a typical 70s building is carried out. For concrete, the circularity is increased from 25% to 50% by mapping out the potential for high quality reuse. During the development of the instrument it was clarified that some criteria are difficult to measure. Accurate and reliable data are limited and assumptions had to be made. To increase the reliability of the instrument, experts have reviewed the instrument several times. In the long-term, the instrument can be used as a tool for quantitative research to reduce the amount of construction and demolition waste and contribute to the reduction of raw material scarcity.
Resumo:
Se han aplicado técnicas de análisis instrumental (FRX, DRX, ATR-IR, TG-ATD, SEM-EDX, MO) al estudio de fragmentos constructivos de época neolítica obtenidos de diferentes yacimientos de la Provincia de Alicante (España). La secuencia y el orden de aplicación de las técnicas se fija en función de las características y la cantidad disponible de cada muestra, estableciéndose con ello un protocolo de trabajo que se aplica siempre al resto de muestras, lo que nos permite comparar los resultados entre sí. El uso de dichas técnicas nos ha permitido la caracterización de los fragmentos constructivos, lo que nos ha llevado a conocer el grado de tecnología alcanzado por estas sociedades, sugiriéndonos que podíamos estar ante los inicios de la aplicación de la tecnología de la cal en esta zona de la Península Ibérica. En este trabajo se presenta una visión global de los resultados obtenidos hasta el momento.
Resumo:
En este trabajo se ponen de manifiesto las ventajas de la utilización de la Termogravimetría acoplada a Espectrometría de masas (TG-EM) y de la Espectrometría Infrarroja mediante Reflectancia Total atenuada (ATR-FTIR) frente a las técnicas usadas tradicionalmente de Termogravimetría (TG) y de Espectroscopia Infrarroja por Transformada de Fourier en modo transmisión (FTIR) en el estudio de materiales de construcción prehistóricos de diversos yacimientos de la Provincia de Alicante (España).
Resumo:
San Roque church (Campeche, Mexico) was built at the end of the 17th century with a micritic limestone and lime mortar in baroque style. In 2005 the church exhibited heavy biodeterioration associated with the development of extensive dark green phototrophic-based biofilms. Several cyanobacteria belonging to the order Chroococcales and lichenized fungi (Toninia nordlandica, Lobaria quercizans, Lecanora subcarnea, Cystocoleus ebeneus) were predominant in the dark biofilm samples, as revealed by DNA-based molecular techniques. In 2009, a cleaning and restoration intervention was adopted; however, after few months, microbial recolonization started to be noticeable on the painted church walls, representing an early phototrophic-based recolonization. According to molecular analysis, scanning electron microscopy observations and digital image analysis of cross sections, new phototrophic-based colonization, composed of cyanobacteria and bryophytes, developed mainly beneath the restored mortars. The intrinsic properties of the mortars, the tropical climate of Campeche and the absence of a biocide treatment in the restoration protocol influenced the recolonization of the church façades and enhanced the overall rate of deterioration in a short-term period.
Resumo:
Today, the use of micropiles for different applications has become very common. In Spain, the cement grouts for micropiles are prepared using ordinary Portland cement and w:c ratio 0.5, although the micropiles standards do not restrict the cement type to use, provided that it reaches a certain compressive strength. In this study, the influence of using slag cement on the microstructure and durability related properties of cement grouts for micropiles have been studied until 90 hardening days, compared to an ordinary Portland cement. Finally, slag cement grouts showed good service properties, better than ordinary Portland cement ones.
Resumo:
Binary and ternary combinations of sewage sludge ash (SSA) with marble dust (MD), fly ash (FA) and rice husk ash (RHA) as replacement in Portland cement pastes, were assessed. Several tests were carried out at different curing ages: thermogravimetry, density, water absorption, ultrasonic pulse velocity and mechanical strengths. Pozzolanic effects of the mineral admixtures, densities similar to control sample and improved absorptions when combining waste materials were identified. In general, the compressive strength reaches or exceeds the cement strength class, and blending SSA, FA and RHA (30% cement replacement) increase of strength by 9%, compared to the control sample, was achieved.
Resumo:
This research studies the self-heating produced by the application of an electric current to conductive cement pastes with carbonaceous materials. The main parameters studied were: type and percentage of carbonaceous materials, effect of moisture, electrical resistance, power consumption, maximum temperature reached and its evolution and ice melting kinetics are the main parameters studied. A mathematical model is also proposed, which predicts that the degree of heating is adjustable with the applied voltage. Finally, the results have been applied to ensure that cementitious materials studied are feasible to control ice layers in transportation infrastructures.
Resumo:
Measurement of concrete strain through non-invasive methods is of great importance in civil engineering and structural analysis. Traditional methods use laser speckle and high quality cameras that may result too expensive for many applications. Here we present a method for measuring concrete deformations with a standard reflex camera and image processing for tracking objects in the concretes surface. Two different approaches are presented here. In the first one, on-purpose objects are drawn on the surface, while on the second one we track small defects on the surface due to air bubbles in the hardening process. The method has been tested on a concrete sample under several loading/unloading cycles. A stop-motion sequence of the process has been captured and analyzed. Results have been successfully compared with the values given by a strain gauge. Accuracy of our methods in tracking objects is below 8 μm, in the order of more expensive commercial devices.
Resumo:
The increase of building pathologies related to the use of stone materials and the use of ventilated stone veneers, requires the reformulation of design concepts in building façades and also the reformulation of the architectural project. The aim of this paper is to identify, analyze and evaluate synthetically building pathologies in stone ventilated façades in order to obtain the main technical conditions to be considered in the architectural design, by interpreting its mechanical behavior and capabilities to prevent such pathologies and to ensure the proper features during the building lifetime. The methodology is based on both laboratory stone tests and in situ tests about construction systems, by analyzing physical and mechanical behavior of the outer layer in relation to other building requirements. The results imply the need of proper sizing, specific quality control and practical application of calculation methods, to control high concentration pressures in ventilated façades by reaching appropriate project solutions. In conclusion, the research about different pathologies of stone ventilated façades, the study of their mechanical behavior, their anchorage and their connection with their constructive aspects, will help to improve the construction quality of the stone ventilated façade in buildings and to enhance the use of natural stone in modern architecture.
Resumo:
The project and the works described in this article mainly deal with the removal of the current asbestos-cement covering of the roof of the Central Market in Alicante and its replacement with zinc diamond-shaped scales, similar to the originals which were implemented in 1921 when the building was put into service. These upgrades were necessary to avoid the causes (and consequences) of rainwater infiltration, as described in an earlier report in 2006, also drafted by the author of this article. The article illustrates the difficulties involving the practical application of Spanish Code RD 396/2006 (minimum safety and health requirements for work with risk of exposure to asbestos) in a complex case such as this, especially with regard to aspects such as economic (increasing costs), technical (increased difficulty of implementation), and the total duration of the work (total increase in duration due to interference with other trades).
Resumo:
Granite submitted to high temperatures may lead to the loss of aesthetic values even before structural damage is caused. Thirteen granitoids were exposed to target temperatures, 200 °C, 400 °C, 600 °C, 800 °C and 1000 °C. Damage characterisation, including roughness, colour and oxidation of chromogen elements by means of X-ray photoelectron spectroscopy (XPS) was assessed. Altered granitoids are more resistant to structural failure but redden rapidly. Black mica-rich granitoids turn into yellow with a maximum at 800 °C. Alkali feldspar-rich granitoids redden progressively due to iron oxidation. Roughness varies progressively in mica-rich granitoids, while in mica-poor granitoids, an increase in roughness precedes catastrophic failure.
Resumo:
The development of synthetic routes for the tailoring of efficient silica-based heterogeneous catalysts functionalized with coordination complexes or metallic nanoparticles has become a important goal in chemistry. Most of these techniques have been based on postsynthetic treatments of preformed silicas. Nevertheless, there is an emerging approach, so-called sol–gel coordination chemistry, based on co-condensation during the sol–gel preparation of the hybrid material of the corresponding complex or nanoparticle modified with terminal trialkoxysilane groups with a silica source (such as tetraethoxysilane) and in the presence of an adequate surfactant. This method leads to the production of new mesoporous metal complex-silica materials, with the metallic functionality incorporated homogeneously into the structure of the hybrid material, improving the stability of the coordination complex (which is protected by the silica network) and reducing the leaching of the active phase. This technique also offers the actual possibility of functionalizing silica or other metal oxides for a wider range of applications, such as photonics, sensing, and biochemical functions.