15 resultados para A Modification of de la Escalera’s Algorithm

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of biopolymers obtained from renewable resources is currently growing and they have found unique applications as matrices and/or nanofillers in ‘green’ nanocomposites. Grafting of polymer chains to the surface of cellulose nanofillers was also studied to promote the dispersion of cellulose nanocrystals in hydrophobic polymer matrices. The aim of this study was to modify the surface of cellulose nanocrystals by grafting from L-lactide by ring-opening polymerization in order to improve the compatibility of nanocrystals and hydrophobic polymer matrices. The effectiveness of the grafting was evidenced by the long-term stability of a suspension of poly(lactic acid)-grafted cellulose nanocrystals in chloroform, by the presence of the carbonyl peak in modified samples determined by Fourier transform infrared spectroscopy and by the modification in C1s contributions observed by X-ray photoelectron spectroscopy. No modification in nanocrystal shape was observed in birefringence studies and transmission electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic properties of hematite were investigated by means of synchrotron radiation photoemission (SR-PES) and X-ray absorption spectroscopy (XAS). Hematite samples were exposed to trimethyl aluminum (TMA) pulses, a widely used Al-precursor for the atomic layer deposition (ALD) of Al2O3. SR-PES and XAS showed that the electronic properties of hematite were modified by the interaction with TMA. In particular, the hybridization of O 2p states with Fe 3d and Fe 4s4p changed upon TMA pulses due to electron inclusion as polarons. The change of hybridization correlates with an enhancement of the photocurrent density due to water oxidation for the hematite electrodes. Such an enhancement has been associated with an improvement in charge carrier transport. Our findings open new perspectives for the understanding and utilization of electrode modifications by very thin ALD films and show that the interactions between metal precursors and substrates seem to be important factors in defining their electronic and photoelectrocatalytic properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, one of the most attractive and desirable ways to solve the energy challenge is harvesting energy directly from the sunlight through the so-called artificial photosynthesis. Among the ternary oxides based on earth–abundant metals, bismuth vanadate has recently emerged as a promising photoanode. Herein, BiVO4 thin film photoanodes have been successfully synthesized by a modified metal-organic precursor decomposition method, followed by an annealing treatment. In an attempt to improve the photocatalytic properties of this semiconductor material for photoelectrochemical water oxidation, the electrodes have been modified (i) by doping with La and Ce (by modifying the composition of the BiVO4 precursor solution with the desired concentration of the doping element), and (ii) by surface modification with Au nanoparticles potentiostatically electrodeposited. La and Ce doping at concentrations of 1 and 2 at% in the BiVO4 precursor solution, respectively, enhances significantly the photoelectrocatalytic performance of BiVO4 without introducing important changes in either the material structure or the electrode morphology, according to XRD and SEM characterization. In addition, surface modification of the electrodes with Au nanoparticles further enhances the photocurrent as such metallic nanoparticles act as co-catalysts, promoting charge transfer at the semiconductor/solution interface. The combination of these two complementary ways of modifying the electrodes has resulted in a significant increase in the photoresponse, facilitating their potential application in artificial photosynthesis devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The location of the La Galite Archipelago on the Internal/External Zones of the Maghrebian Chain holds strong interest for the reconstruction of the geodynamic evolution of the Mesomediterranean Microplate-Africa Plate Boundary Zone. New stratigraphic and petrographic data on sedimentary successions intruded upon by plutonic rocks enabled a better definition of the palaeogeographic and palaeotectonic evolutionary model of the area during the early-middle Miocene. The lower Miocene sedimentary units (La Galite Flysch and Numidian-like Flysch) belong to the Mauritanian (internal) and Massylian (external) sub-Domains of the Maghrebian Chain, respectively. These deposits are related to a typical syn-orogenic deposition in the Maghrebian Flysch Basin Domain, successively backthrusted above the internal units. The backthrusting age is post-Burdigalian (probably Langhian-Serravallian) and the compressional phase represents the last stage in the building of the accretionary wedge of the Maghrebian orogen. These flysch units may be co-relatable to the similar well-known formations along the Maghrebian and Betic Chains. The emplacement of potassic peraluminous magmatism, caused local metamorphism in the Late Serravallian-Early Tortonian (14–10 Ma), after the last compressional phase (backthrusting), during an extensional tectonic event. This extensional phase is probably due to the opening of a slab break-off in the deep subduction system. La Galite Archipelago represents a portion of the Maghrebian Flysch Basin tectonically emplaced above the southern margin of the “Mesomediterranean Microplate” which separated the Piemontese-Ligurian Ocean from a southern oceanic branch of the Tethys (i.e. the Maghrebian Flysch Basin). The possible presence of an imbricate thrust system between La Galite Archipelago and northern Tunisia may be useful to exclude the petroleum exploration from the deformed sectors of the offshore area considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hardware/Software partitioning (HSP) is a key task for embedded system co-design. The main goal of this task is to decide which components of an application are to be executed in a general purpose processor (software) and which ones, on a specific hardware, taking into account a set of restrictions expressed by metrics. In last years, several approaches have been proposed for solving the HSP problem, directed by metaheuristic algorithms. However, due to diversity of models and metrics used, the choice of the best suited algorithm is an open problem yet. This article presents the results of applying a fuzzy approach to the HSP problem. This approach is more flexible than many others due to the fact that it is possible to accept quite good solutions or to reject other ones which do not seem good. In this work we compare six metaheuristic algorithms: Random Search, Tabu Search, Simulated Annealing, Hill Climbing, Genetic Algorithm and Evolutionary Strategy. The presented model is aimed to simultaneously minimize the hardware area and the execution time. The obtained results show that Restart Hill Climbing is the best performing algorithm in most cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This correspondence presents an efficient method for reconstructing a band-limited signal in the discrete domain from its crossings with a sine wave. The method makes it possible to design A/D converters that only deliver the crossing timings, which are then used to interpolate the input signal at arbitrary instants. Potentially, it may allow for reductions in power consumption and complexity in these converters. The reconstruction in the discrete domain is based on a recently-proposed modification of the Lagrange interpolator, which is readily implementable with linear complexity and efficiently, given that it re-uses known schemes for variable fractional-delay (VFD) filters. As a spin-off, the method allows one to perform spectral analysis from sine wave crossings with the complexity of the FFT. Finally, the results in the correspondence are validated in several numerical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated surface waves guided by the boundary of a semi-infinite layered metal-dielectric nanostructure cut normally to the layers and a semi-infinite dielectric material. Using the Floquet-Bloch formalism, we found that Dyakonov-like surface waves with hybrid polarization can propagate in dramatically enhanced angular range compared to conventional birefringent materials. Our numerical simulations for an Ag-GaAs stack in contact with glass show a low to moderate influence of losses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subpixel methods increase the accuracy and efficiency of image detectors, processing units, and algorithms and provide very cost-effective systems for object tracking. A recently proposed method permits micropixel and submicropixel accuracies providing certain design constraints on the target are met. In this paper, we explore the use of Costas arrays - permutation matrices with ideal auto-ambiguity properties - for the design of such targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a systematic study of the effect of the electrochemical treatment (galvanostatic electrolysis in a filter-press electrochemical cell) on the surface chemistry and porous texture of commercial activated carbon cloth. The same treatments have been conducted over a granular activated carbon in order to clarify the effect of morphology. The influence of different electrochemical variables, such as the electrode polarity (anodic or cathodic), the applied current (between 0.2 and 1.0 A) and the type of electrolyte (HNO3 and NaCl) have also been analyzed. The anodic treatment of both activated carbons causes an increase in the amount of surface oxygen groups, whereas the cathodic treatment does not produce any relevant modification of the surface chemistry. The HNO3 electrolyte produced a lower generation of oxygen groups than the NaCl one, but differences in the achieved distribution of surface groups can be benefitial to selectively tune the surface chemistry. The porous texture seems to be unaltered after the electro-oxidation treatment. The validity of this method to introduce surface oxygen groups with a pseudocapacitive behavior has been corroborated by cyclic voltammetry. As a conclusion, the electrochemical treatment can be easily implemented to selectively and quantitatively modify the surface chemistry of activated carbons with different shapes and morphologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen functionalization of a highly microporous activated carbon (BET surface area higher than 3000 m2/g) has been achieved using the following sequence of treatments: (i) chemical oxidation using concentrated nitric acid, (ii) amidation by acyl chloride substitution with NH4NO3 and (iii) amination by Hoffman rearrangement. This reaction pathway yielded amide and amine functional groups, and a total nitrogen content higher than 3 at.%. It is achieved producing only a small decrease (20%) of the starting microporosity, being most of it related to the initial wet oxidation of the activated carbon. Remarkably, nitrogen aromatic rings were also formed as a consequence of secondary cyclation reactions. The controlled step-by-step modification of the surface chemistry allowed to assess the influence of individual nitrogen surface groups in the electrochemical performance in 1 M H2SO4 of the carbon materials. The largest gravimetric capacitance was registered for the pristine activated carbon due to its largest apparent surface area. The nitrogen-containing activated carbons showed the highest surface capacitances. Interestingly, the amidated activated carbon showed the superior capacitance retention due to the presence of functional groups (such as lactams, imides and pyrroles) that enhance electrical conductivity through their electron-donating properties, showing a capacitance of 83 F/g at 50 A/g.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outliers are objects that show abnormal behavior with respect to their context or that have unexpected values in some of their parameters. In decision-making processes, information quality is of the utmost importance. In specific applications, an outlying data element may represent an important deviation in a production process or a damaged sensor. Therefore, the ability to detect these elements could make the difference between making a correct and an incorrect decision. This task is complicated by the large sizes of typical databases. Due to their importance in search processes in large volumes of data, researchers pay special attention to the development of efficient outlier detection techniques. This article presents a computationally efficient algorithm for the detection of outliers in large volumes of information. This proposal is based on an extension of the mathematical framework upon which the basic theory of detection of outliers, founded on Rough Set Theory, has been constructed. From this starting point, current problems are analyzed; a detection method is proposed, along with a computational algorithm that allows the performance of outlier detection tasks with an almost-linear complexity. To illustrate its viability, the results of the application of the outlier-detection algorithm to the concrete example of a large database are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sequential design method is presented for the design of thermally coupled distillation sequences. The algorithm starts by selecting a set of sequences in the space of basic configurations in which the internal structure of condensers and reboilers is explicitly taken into account and extended with the possibility of including divided wall columns (DWC). This first stage is based on separation tasks (except by the DWCs) and therefore it does not provide an actual sequence of columns. In the second stage the best arrangement in N-1 actual columns is performed taking into account operability and mechanical constraints. Finally, for a set of candidate sequences the algorithm try to reduce the number of total columns by considering Kaibel columns, elimination of transfer blocks or columns with vertical partitions. An example illustrate the different steps of the sequential algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inelastic portion of the tunnel current through an individual magnetic atom grants unique access to read out and change the atom’s spin state, but it also provides a path for spontaneous relaxation and decoherence. Controlled closure of the inelastic channel would allow for the latter to be switched off at will, paving the way to coherent spin manipulation in single atoms. Here, we demonstrate complete closure of the inelastic channels for both spin and orbital transitions due to a controlled geometric modification of the atom’s environment, using scanning tunneling microscopy (STM). The observed suppression of the excitation signal, which occurs for Co atoms assembled into chains on a Cu2N substrate, indicates a structural transition affecting the dz2 orbital, effectively cutting off the STM tip from the spin-flip cotunneling path.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Después de más de treinta años, la ley de costas española ha sido profundamente modificada. Sigue en vigor, excepto en aquellos aspectos que se han revisado, pero los cambios son tan profundos que se ha dibujado un escenario notablemente distinto al anterior. En este trabajo se recogen los motivos que han hecho de la ley de 1988 una norma difícil de aplicar, así como la controversia generada especialmente por la transformación de los propietarios de viviendas situadas en el dominio público, en titulares de un derecho de ocupación temporal. Los efectos de los informes de la Comisión de Peticiones del Parlamento Europeo, emitidos en 2009 y 2013, han sido también determinantes en la redacción de la Ley 2/2013 de protección y uso sostenible del litoral y de modificación de la Ley 22/1988, de Costas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.