21 resultados para 3D motion model
em Universidad de Alicante
Resumo:
Se ha realizado un modelo geológico en 3D de la porción NO de la Cuenca del Bajo Segura, por ser esta la que mostraba una menor complicación geológica. La cuenca se ha dividido en 7 sintemas (nombrados Ab,M1, M2, P1, P2, Pc y Q) y se ha utilizado como base de la cuenca el techo de la Formación Calizas de Las Ventanas (Ve). La construcción del modelo 3D permite un mejor conocimiento geológico de la cuenca. El modelo apunta a una mayor complicación tectónica de lo supuesto en un principio.
Resumo:
This work presents a 3D geometric model of growth strata cropping out in a fault-propagation fold associated with the Crevillente Fault (Abanilla-Alicante sector) from the Bajo Segura Basin (eastern Betic Cordillera, southern Spain). The analysis of this 3D model enables us to unravel the along-strike and along-section variations of the growth strata, providing constraints to assess the fold development, and hence, the fault kinematic evolution in space and time. We postulate that the observed along-strike dip variations are related to lateral variation in fault displacement. Along-section variations of the progressive unconformity opening angles indicate greater fault slip in the upper Tortonian–Messinian time span; from the Messinian on, quantitative analysis of the unconformity indicate a constant or lower tectonic activity of the Crevillente Fault (Abanilla-Alicante sector); the minor abundance of striated pebbles in the Pliocene-Quaternary units could be interpreted as a decrease in the stress magnitude and consequently in the tectonic activity of the fault. At a regional scale, comparison of the growth successions cropping out in the northern and southern limits of the Bajo Segura Basin points to a southward migration of deformation in the basin. This means that the Bajo Segura Fault became active after the Crevillente Fault (Abanilla-Alicante sector), for which activity on the latter was probably decreasing according to our data. Consequently, we propose that the seismic hazard at the northern limit of the Bajo Segura Basin should be lower than at the southern limit.
Resumo:
The research described in this thesis was motivated by the need of a robust model capable of representing 3D data obtained with 3D sensors, which are inherently noisy. In addition, time constraints have to be considered as these sensors are capable of providing a 3D data stream in real time. This thesis proposed the use of Self-Organizing Maps (SOMs) as a 3D representation model. In particular, we proposed the use of the Growing Neural Gas (GNG) network, which has been successfully used for clustering, pattern recognition and topology representation of multi-dimensional data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models, without considering time constraints. It is proposed a hardware implementation leveraging the computing power of modern GPUs, which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). The proposed methods were applied to different problem and applications in the area of computer vision such as the recognition and localization of objects, visual surveillance or 3D reconstruction.
Resumo:
Comunicación presentada en el IX Workshop de Agentes Físicos (WAF'2008), Vigo, 11-12 septiembre 2008.
Resumo:
Nowadays, there is an increasing number of robotic applications that need to act in real three-dimensional (3D) scenarios. In this paper we present a new mobile robotics orientated 3D registration method that improves previous Iterative Closest Points based solutions both in speed and accuracy. As an initial step, we perform a low cost computational method to obtain descriptions for 3D scenes planar surfaces. Then, from these descriptions we apply a force system in order to compute accurately and efficiently a six degrees of freedom egomotion. We describe the basis of our approach and demonstrate its validity with several experiments using different kinds of 3D sensors and different 3D real environments.
Resumo:
In this work, we propose the use of the neural gas (NG), a neural network that uses an unsupervised Competitive Hebbian Learning (CHL) rule, to develop a reverse engineering process. This is a simple and accurate method to reconstruct objects from point clouds obtained from multiple overlapping views using low-cost sensors. In contrast to other methods that may need several stages that include downsampling, noise filtering and many other tasks, the NG automatically obtains the 3D model of the scanned objects. To demonstrate the validity of our proposal we tested our method with several models and performed a study of the neural network parameterization computing the quality of representation and also comparing results with other neural methods like growing neural gas and Kohonen maps or classical methods like Voxel Grid. We also reconstructed models acquired by low cost sensors that can be used in virtual and augmented reality environments for redesign or manipulation purposes. Since the NG algorithm has a strong computational cost we propose its acceleration. We have redesigned and implemented the NG learning algorithm to fit it onto Graphics Processing Units using CUDA. A speed-up of 180× faster is obtained compared to the sequential CPU version.
Resumo:
Los modelos geológico-geotécnicos permiten al ingeniero comprender mejor las condiciones reinantes en un determinado lugar, además de identificar los principales problemas geotécnicos y hacer más realista la estimación de propiedades del suelo. En este trabajo se presenta la metodología empleada para el diseño de un modelo geológico-geotécnico tridimensional de la Vega Baja del Río Segura que consta de cuatro zonas caracterizadas por sus propiedades geotécnicas y su problemática asociada. El modelo resulta fundamentalmente de gran utilidad para la planificación de investigaciones preliminares de obras civiles.
Resumo:
Comunicación presentada en la VI Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA'95), Alicante, 15-17 noviembre 1995.
Resumo:
En este artículo se describe el concepto de plataforma RASMA, Robot-Assisted Stop-Motion Animation, cuya finalidd es facilitar la tarea de generar los fotogramas necesarios para crear una secuencia animada en 2D. Se describen tanto la generación de trayectorias que deben seguir los objetos (en Unity 3D o en Adobe Flash Player), como la exportación/importación de los ficheros de datos en XML, la planificación de las trayectorias del robot, la toma de fotogramas y el ensamblado final de toda la secuencia.
Resumo:
Self-organising neural models have the ability to provide a good representation of the input space. In particular the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time-consuming, especially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This paper proposes a Graphics Processing Unit (GPU) parallel implementation of the GNG with Compute Unified Device Architecture (CUDA). In contrast to existing algorithms, the proposed GPU implementation allows the acceleration of the learning process keeping a good quality of representation. Comparative experiments using iterative, parallel and hybrid implementations are carried out to demonstrate the effectiveness of CUDA implementation. The results show that GNG learning with the proposed implementation achieves a speed-up of 6× compared with the single-threaded CPU implementation. GPU implementation has also been applied to a real application with time constraints: acceleration of 3D scene reconstruction for egomotion, in order to validate the proposal.
Resumo:
Customizing shoe manufacturing is one of the great challenges in the footwear industry. It is a production model change where design adopts not only the main role, but also the main bottleneck. It is therefore necessary to accelerate this process by improving the accuracy of current methods. Rapid prototyping techniques are based on the reuse of manufactured footwear lasts so that they can be modified with CAD systems leading rapidly to new shoe models. In this work, we present a shoe last fast reconstruction method that fits current design and manufacturing processes. The method is based on the scanning of shoe last obtaining sections and establishing a fixed number of landmarks onto those sections to reconstruct the shoe last 3D surface. Automated landmark extraction is accomplished through the use of the self-organizing network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates up to 12 times the surface reconstruction and filtering processes used by the current shoe last design software. The proposed method offers higher accuracy compared with methods with similar efficiency as voxel grid.
Resumo:
We propose the design of a real-time system to recognize and interprethand gestures. The acquisition devices are low cost 3D sensors. 3D hand pose will be segmented, characterized and track using growing neural gas (GNG) structure. The capacity of the system to obtain information with a high degree of freedom allows the encoding of many gestures and a very accurate motion capture. The use of hand pose models combined with motion information provide with GNG permits to deal with the problem of the hand motion representation. A natural interface applied to a virtual mirrorwriting system and to a system to estimate hand pose will be designed to demonstrate the validity of the system.
Resumo:
Since the last decades, academic research has paid much attention to the phenomenon of revitalizing indigenous cultures and, more precisely, the use of traditional indigenous healing methods both to deal with individuals' mental health problems and with broader cultural issues. The re-evaluation of traditional indigenous healing practices as a mode of psychotherapeutic treatment has been perhaps one of the most interesting sociocultural processes in the postmodern era. In this regard, incorporating indigenous forms of healing in a contemporary framework of indigenous mental health treatment should be interpreted not simply as an alternative therapeutic response to the clinical context of Western psychiatry, but also constitutes a political response on the part of ethno-cultural groups that have been stereotyped as socially inferior and culturally backward. As a result, a postmodern form of "traditional healing" developed with various forms of knowledge, rites and the social uses of medicinal plants, has been set in motion on many Canadian indigenous reserves over the last two decades.
Resumo:
Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG) network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.
Resumo:
Many applications including object reconstruction, robot guidance, and. scene mapping require the registration of multiple views from a scene to generate a complete geometric and appearance model of it. In real situations, transformations between views are unknown and it is necessary to apply expert inference to estimate them. In the last few years, the emergence of low-cost depth-sensing cameras has strengthened the research on this topic, motivating a plethora of new applications. Although they have enough resolution and accuracy for many applications, some situations may not be solved with general state-of-the-art registration methods due to the signal-to-noise ratio (SNR) and the resolution of the data provided. The problem of working with low SNR data, in general terms, may appear in any 3D system, then it is necessary to propose novel solutions in this aspect. In this paper, we propose a method, μ-MAR, able to both coarse and fine register sets of 3D points provided by low-cost depth-sensing cameras, despite it is not restricted to these sensors, into a common coordinate system. The method is able to overcome the noisy data problem by means of using a model-based solution of multiplane registration. Specifically, it iteratively registers 3D markers composed by multiple planes extracted from points of multiple views of the scene. As the markers and the object of interest are static in the scenario, the transformations obtained for the markers are applied to the object in order to reconstruct it. Experiments have been performed using synthetic and real data. The synthetic data allows a qualitative and quantitative evaluation by means of visual inspection and Hausdorff distance respectively. The real data experiments show the performance of the proposal using data acquired by a Primesense Carmine RGB-D sensor. The method has been compared to several state-of-the-art methods. The results show the good performance of the μ-MAR to register objects with high accuracy in presence of noisy data outperforming the existing methods.