8 resultados para 2-PHASE SYSTEMS

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phase equilibrium data regression is an unavoidable task necessary to obtain the appropriate values for any model to be used in separation equipment design for chemical process simulation and optimization. The accuracy of this process depends on different factors such as the experimental data quality, the selected model and the calculation algorithm. The present paper summarizes the results and conclusions achieved in our research on the capabilities and limitations of the existing GE models and about strategies that can be included in the correlation algorithms to improve the convergence and avoid inconsistencies. The NRTL model has been selected as a representative local composition model. New capabilities of this model, but also several relevant limitations, have been identified and some examples of the application of a modified NRTL equation have been discussed. Furthermore, a regression algorithm has been developed that allows for the advisable simultaneous regression of all the condensed phase equilibrium regions that are present in ternary systems at constant T and P. It includes specific strategies designed to avoid some of the pitfalls frequently found in commercial regression tools for phase equilibrium calculations. Most of the proposed strategies are based on the geometrical interpretation of the lowest common tangent plane equilibrium criterion, which allows an unambiguous comprehension of the behavior of the mixtures. The paper aims to show all the work as a whole in order to reveal the necessary efforts that must be devoted to overcome the difficulties that still exist in the phase equilibrium data regression problem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the results of a liquid–liquid equilibrium data correlation for 11 ternary systems which have not been previously fitted using the NRTL model or, when they have, the results presented in the literature are inconsistent with the experimental behavior of the system. These ternary systems include mixtures with one or two partially miscible pairs. During the correlation process, new restrictions were imposed on the values for the NRTL binary parameters to ensure correct prediction of the total or partial miscibility for the binary pairs involved. In addition, topological concepts related to the Gibbs stability test have been applied in order to validate the results in the whole range of compositions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Closed miscibility gaps in ternary liquid mixtures, at constant temperature and pressure, are obtained if phase separations occur only in the ternary region, whilst all binary mixtures involved in the system are completely miscible. This type of behaviour, although not very frequent, has been observed for a certain number of systems. Nevertheless, we have found no information about the applicability of the common activity coefficient models, as NRTL and UNIQUAC, for these types of ternary systems. Moreover, any of the island type systems published in the most common liquid–liquid equilibrium data collections, are correlated with any model. In this paper, the applicability of the NRTL equation to model the LLE of island type systems is assessed using topological concepts related to the Gibbs stability test. A first attempt to correlate experimental LLE data for two island type ternary systems is also presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Poster presented in the 11th Mediterranean Congress of Chemical Engineering, Barcelona, October 21-24, 2008.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L−1 and 9 μg L−1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L−1), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The solubility, density, refractive index, and viscosity data for the ethylene glycol + CsBr + H2O, 1,2-propanediol + CsBr + H2O, and glycerin + CsBr + H2O ternary systems have been determined at (288.15, 298.15, and 308.15) K. In all cases, the solubility of CsBr in aqueous solutions was decreased significantly due to the presence of polyhydric alcohol. The liquid–solid equilibrium experimental data were correlated using the NRTL (nonrandom two-liquid) activity coefficient model, considering nondissociation of the dissolved salt in the liquid phase, and new interaction parameters were estimated. The mean deviations between calculated and experimental compositions were low, showing the good descriptive quality and applicability of the NRTL model. The refractive indices, densities, and viscosities for the unsaturated solutions of the three ternary systems have also been measured at three temperatures. Values for all of the properties were correlated with the salt concentrations and proportions of polyhydric alcohol in the solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a long-term phase-coherent timing analysis and pulse-phase resolved spectroscopy for the two outbursts observed from the transient anomalous X-ray pulsar CXOU J164710.2−455216. For the first outburst we used 11 Chandra and XMM–Newton observations between 2006 September and 2009 August, the longest baseline yet for this source. We obtain a coherent timing solution with P = 10.61065583(4) s, Ṗ = 9.72(1) × 10−13 s s−1 and P̈ = –1.05(5) × 10−20 s s−2. Under the standard assumptions this implies a surface dipolar magnetic field of ∼1014 G, confirming this source as a standard B magnetar. We also study the evolution of the pulse profile (shape, intensity and pulsed fraction) as a function of time and energy. Using the phase-coherent timing solution we perform a phase-resolved spectroscopy analysis, following the spectral evolution of pulse-phase features, which hints at the physical processes taking place on the star. The results are discussed from the perspective of magnetothermal evolution models and the untwisting magnetosphere model. Finally, we present similar analysis for the second, less intense, 2011 outburst. For the timing analysis we used Swift data together with 2 XMM–Newton and Chandra pointings. The results inferred for both outbursts are compared and briefly discussed in a more general framework.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The edges of graphene and graphene like systems can host localized states with evanescent wave function with properties radically different from those of the Dirac electrons in bulk. This happens in a variety of situations, that are reviewed here. First, zigzag edges host a set of localized non-dispersive state at the Dirac energy. At half filling, it is expected that these states are prone to ferromagnetic instability, causing a very interesting type of edge ferromagnetism. Second, graphene under the influence of external perturbations can host a variety of topological insulating phases, including the conventional quantum Hall effect, the quantum anomalous Hall (QAH) and the quantum spin Hall phase, in all of which phases conduction can only take place through topologically protected edge states. Here we provide an unified vision of the properties of all these edge states, examined under the light of the same one orbital tight-binding model. We consider the combined action of interactions, spin–orbit coupling and magnetic field, which produces a wealth of different physical phenomena. We briefly address what has been actually observed experimentally.