79 resultados para Isabel Clara Eugenia, Infanta of Spain, 1566-1633
Resumo:
The Tertiary detritic aquifer of Madrid (TDAM), with an average thickness of 1500 m and a heterogeneous, anisotropic structure, supplies water to Madrid, the most populated city of Spain (3.2 million inhabitants in the metropolitan area). Besides its complex structure, a previous work focused in the north-northwest of Madrid city showed that the aquifer behaves quasi elastically trough extraction/recovery cycles and ground uplifting during recovery periods compensates most of the ground subsidence measured during previous extraction periods (Ezquerro et al., 2014). Therefore, the relationship between ground deformation and groundwater level through time can be simulated using simple elastic models. In this work, we model the temporal evolution of the piezometric level in 19 wells of the TDAM in the period 1997–2010. Using InSAR and piezometric time series spanning the studied period, we first estimate the elastic storage coefficient (Ske) for every well. Both, the Ske of each well and the average Ske of all wells, are used to predict hydraulic heads at the different well locations during the study period and compared against the measured hydraulic heads, leading to very similar errors when using the Ske of each well and the average Ske of all wells: 14 and 16 % on average respectively. This result suggests that an average Ske can be used to estimate piezometric level variations in all the points where ground deformation has been measured by InSAR, thus allowing production of piezometric level maps for the different extraction/recovery cycles in the TDAM.
Resumo:
In this work, the microstructure of mortars made with an ordinary Portland cement and slag cement has been studied. These mortars were exposed to four different constant temperature and relative humidity environments during a 180-day period. The microstructure has been studied using impedance spectroscopy, and mercury intrusion porosimetry as a contrast technique. The impedance spectroscopy parameters make it possible to analyze the evolution of the solid fraction formation for the studied mortars and their results are confirmed with those obtained using mercury intrusion porosimetry. The development of the pore network of mortars is affected by the environment. However, slag cement mortars are more influenced by temperature while the relative humidity has a greater influence on the OPC mortars. The results show that slag cement mortars hardened under non-optimal environments have a more refined microstructure than OPC mortars for the studied environmental conditions.
Resumo:
In this work authors present the experimental liquid–liquid equilibria (LLE) data of water + ethanol + 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim][Tf2N]) system at different temperatures. The LLE of the system was obtained in the temperature range from 283.2 to 323.2 K. The nonrandom two liquid (NRTL) and universal quasichemical (UNIQUAC) models were used to correlate ternary systems. The equilibrium compositions were successfully correlated by the interaction parameters from both models, however UNIQUAC gave a more accurate correlation. Finally, a study about the solvent capability of ionic liquid was made in order to evaluate the possibility of separating the mixture formed by ethanol and water using that ionic liquid.
Resumo:
The Remez penalty and smoothing algorithm (RPSALG) is a unified framework for penalty and smoothing methods for solving min-max convex semi-infinite programing problems, whose convergence was analyzed in a previous paper of three of the authors. In this paper we consider a partial implementation of RPSALG for solving ordinary convex semi-infinite programming problems. Each iteration of RPSALG involves two types of auxiliary optimization problems: the first one consists of obtaining an approximate solution of some discretized convex problem, while the second one requires to solve a non-convex optimization problem involving the parametric constraints as objective function with the parameter as variable. In this paper we tackle the latter problem with a variant of the cutting angle method called ECAM, a global optimization procedure for solving Lipschitz programming problems. We implement different variants of RPSALG which are compared with the unique publicly available SIP solver, NSIPS, on a battery of test problems.
Resumo:
Teachers are deeply concerned on how to be more effective in our task of teaching. We must organize the contents of our specific area providing them with a logical configuration, for which we must know the mental structure of the students that we have in the classroom. We must shape this mental structure, in a progressive manner, so that they can assimilate the contents that we are trying to transfer, to make the learning as meaningful as possible. In the generative learning model, the links before the stimulus delivered by the teacher and the information stored in the mind of the learner requires an important effort by the student, who should build new conceptual meanings. That effort, which is extremely necessary for a good learning, sometimes is the missing ingredient so that the teaching-learning process can be properly assimilated. In electrical circuits, which we know are perfectly controlled and described by Ohm's law and Kirchhoff's two rules, there are two concepts that correspond to the following physical quantities: voltage and electrical resistance. These two concepts are integrated and linked when the concept of current is presented. This concept is not subordinated to the previous ones, it has the same degree of inclusiveness and gives rise to substantial relations between the three concepts, materializing it into a law: The Ohm, which allows us to relate and to calculate any of the three physical magnitudes, two of them known. The alternate current, in which both the voltage and the current are reversed dozens of times per second, plays an important role in many aspects of our modern life, because it is universally used. Its main feature is that its maximum voltage is easily modifiable through the use of transformers, which greatly facilitates its transfer with very few losses. In this paper, we present a conceptual map so that it is used as a new tool to analyze in a logical manner the underlying structure in the alternate current circuits, with the objective of providing the students from Sciences and Engineering majors with another option to try, amongst all, to achieve a significant learning of this important part of physics.
Resumo:
tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries.
Resumo:
In recent times the Douglas–Rachford algorithm has been observed empirically to solve a variety of nonconvex feasibility problems including those of a combinatorial nature. For many of these problems current theory is not sufficient to explain this observed success and is mainly concerned with questions of local convergence. In this paper we analyze global behavior of the method for finding a point in the intersection of a half-space and a potentially non-convex set which is assumed to satisfy a well-quasi-ordering property or a property weaker than compactness. In particular, the special case in which the second set is finite is covered by our framework and provides a prototypical setting for combinatorial optimization problems.
Resumo:
A mixture of water + NaCl + 1-butanol at 101.3 kPa is studied in order to determine the influence of salt on its experimental vapor–liquid–liquid–solid equilibrium. A detailed analysis of the evolution with temperature of the different equilibrium regions is carried out. The study is conducted at a constant pressure of 101.3 kPa in a recirculating still that has been modified by our research group. The changes in the 1-butanol/water composition ratio in the vapor phase that are provoked by the salt are studied as a function of equilibrium region. In addition, the mutual solubility of 1-butanol and water is assessed in the liquid–liquid and solid–liquid regions.
Resumo:
In this work, we propose a new methodology for the large scale optimization and process integration of complex chemical processes that have been simulated using modular chemical process simulators. Units with significant numerical noise or large CPU times are substituted by surrogate models based on Kriging interpolation. Using a degree of freedom analysis, some of those units can be aggregated into a single unit to reduce the complexity of the resulting model. As a result, we solve a hybrid simulation-optimization model formed by units in the original flowsheet, Kriging models, and explicit equations. We present a case study of the optimization of a sour water stripping plant in which we simultaneously consider economics, heat integration and environmental impact using the ReCiPe indicator, which incorporates the recent advances made in Life Cycle Assessment (LCA). The optimization strategy guarantees the convergence to a local optimum inside the tolerance of the numerical noise.
Resumo:
We have studied the role played by cyclic topology on charge-transfer properties of recently synthesized π -conjugated molecules, namely the set of [n]cycloparaphenylene compounds, with n the number of phenylene rings forming the curved nanoring. We estimate the charge-transfer rates for holes and electrons migration within the array of molecules in their crystalline state. The theoretical calculations suggest that increasing the size of the system would help to obtain higher hole and electron charge-transfer rates and that these materials might show an ambipolar behavior in real samples, independently of the different mode of packing followed by the [6]cycloparaphenylene and [12]cycloparaphenylene cases studied.
Resumo:
Habitat-related heterogeneity of striped red mullet Mullus surmuletus heterospecific foraging assemblages was examined off the coast of Spain. Video-based focal-follows conducted on 122 M. surmuletus assemblages (446 total individuals) revealed an array of attendant species (n = 7) with composition linked to benthic habitat complexity; bare sandy substrata were characterized by homospecific groups of M. surmuletus, while habitats with rock and vegetation attracted a variety of scrounging labrids and sparids. Although the nature of the relationship between M. surmuletus and attendants requires further exploration, the present study indicates that substratum composition can be a driving factor explaining the dynamics of this heterospecific assemblage.
Resumo:
In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.
Resumo:
Virtual Screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. However, the accuracy of most VS methods is constrained by limitations in the scoring function that describes biomolecular interactions, and even nowadays these uncertainties are not completely understood. In order to improve accuracy of scoring functions used in most VS methods we propose a hybrid novel approach where neural networks (NNET) and support vector machines (SVM) methods are trained with databases of known active (drugs) and inactive compounds, this information being exploited afterwards to improve VS predictions.
Resumo:
The Internet has changed the way in which organizations communicate with their publics, and museums are not an exception. The consolidation of Web 2.0 has not only given museums access to a powerful new tool for disseminating information, but has involved significant changes in the relationship between institutions and their publics, facilitating and enhancing the interaction between them. The overall objective of this paper is to analyze the degree of interactivity implemented in the websites of major international art museums, in order to assess if museums are evolving towards more dialogic systems with relation to their publics. The results indicate that museums still have a low level of interactivity on their websites, both in the tools used to present information and the resources available for interaction with virtual visitors. But it has also observed that museums are progressively implementing interactive and dialogic sources, suggesting a clear trend towards new ways of managing these platforms in order to establish more participatory and collaborative communication systems with virtual users.
Resumo:
Predicting accurate bond length alternations (BLAs) in long conjugated oligomers has been a significant challenge for electronic-structure methods for many decades, made particularly important by the close relationships between BLA and the rich optoelectronic properties of π-delocalized systems. Here, we test the accuracy of recently developed, and increasingly popular, double hybrid (DH) functionals, positioned at the top of Jacobs Ladder of DFT methods of increasing sophistication, computational cost, and accuracy, due to incorporation of MP2 correlation energy. Our test systems comprise oligomeric series of polyacetylene, polymethineimine, and polysilaacetylene up to six units long. MP2 calculations reveal a pronounced shift in BLAs between the 6-31G(d) basis set used in many studies of BLA to date and the larger cc-pVTZ basis set, but only modest shifts between cc-pVTZ and aug-cc-pVQZ results. We hence perform new reference CCSD(T)/cc-pVTZ calculations for all three series of oligomers against which we assess the performance of several families of DH functionals based on BLYP, PBE, and TPSS, along with lower-rung relatives including global- and range-separated hybrids. Our results show that DH functionals systematically improve the accuracy of BLAs relative to single hybrid functionals. xDH-PBE0 (N4 scaling using SOS-MP2) emerges as a DH functional rivaling the BLA accuracy of SCS-MP2 (N5 scaling), which was found to offer the best compromise between computational cost and accuracy the last time the BLA accuracy of DFT- and wave function-based methods was systematically investigated. Interestingly, xDH-PBE0 (XYG3), which differs to other DHs in that its MP2 term uses PBE0 (B3LYP) orbitals that are not self-consistent with the DH functional, is an outlier of trends of decreasing average BLA errors with increasing fractions of MP2 correlation and HF exchange.